{"title":"Liquid Helium as a reference may provide clarity for some neutron reflectometry experiments1","authors":"T. Charlton, E. Guo, N. Lavrik, M. Fitzsimmons","doi":"10.3233/jnr-220041","DOIUrl":null,"url":null,"abstract":"Neutron reflectometry experiments infer the variation of the scattering length density of a smooth planar film as a function of depth averaged over the lateral dimensions of the sample from the intensity of a neutron beam reflected by the sample. Because the phase information of the neutron wave function is not preserved by an intensity measurement, most analyses rely on comparisons of data to predictions from models. Such comparisons do not provide unique solutions and can yield erroneous conclusions. A real-world example is provided. We show that in some limited cases, measurements of a sample immersed in the vapor and liquid phases of Helium may improve model selection.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutron reflectometry experiments infer the variation of the scattering length density of a smooth planar film as a function of depth averaged over the lateral dimensions of the sample from the intensity of a neutron beam reflected by the sample. Because the phase information of the neutron wave function is not preserved by an intensity measurement, most analyses rely on comparisons of data to predictions from models. Such comparisons do not provide unique solutions and can yield erroneous conclusions. A real-world example is provided. We show that in some limited cases, measurements of a sample immersed in the vapor and liquid phases of Helium may improve model selection.