The homotopy Lie algebra of a Tor-independent tensor product

IF 0.6 Q3 MATHEMATICS
Luigi Ferraro, Mohsen Gheibi, David A. Jorgensen, Nicholas Packauskas, Josh Pollitz
{"title":"The homotopy Lie algebra of a Tor-independent tensor product","authors":"Luigi Ferraro, Mohsen Gheibi, David A. Jorgensen, Nicholas Packauskas, Josh Pollitz","doi":"10.1215/00192082-10592402","DOIUrl":null,"url":null,"abstract":"In this article we investigate a pair of surjective local ring maps $S_1\\leftarrow R\\to S_2$ and their relation to the canonical projection $R\\to S_1\\otimes_R S_2$, where $S_1,S_2$ are Tor-independent over $R$. Our main result asserts a structural connection between the homotopy Lie algebra of $S:=S_1\\otimes_R S_2$, denoted $\\pi(S)$, in terms of those of $R,S_1$ and $S_2$. Namely, $\\pi(S)$ is the pullback of (adjusted) Lie algebras along the maps $\\pi(S_i)\\to \\pi(R)$ in various cases, including when the maps above have residual characteristic zero. Consequences to the main theorem include structural results on Andr\\'{e}-Quillen cohomology, stable cohomology, and Tor algebras, as well as an equality relating the Poincar\\'{e} series of the common residue field of $R,S_1,S_2$ and $S$.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10592402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we investigate a pair of surjective local ring maps $S_1\leftarrow R\to S_2$ and their relation to the canonical projection $R\to S_1\otimes_R S_2$, where $S_1,S_2$ are Tor-independent over $R$. Our main result asserts a structural connection between the homotopy Lie algebra of $S:=S_1\otimes_R S_2$, denoted $\pi(S)$, in terms of those of $R,S_1$ and $S_2$. Namely, $\pi(S)$ is the pullback of (adjusted) Lie algebras along the maps $\pi(S_i)\to \pi(R)$ in various cases, including when the maps above have residual characteristic zero. Consequences to the main theorem include structural results on Andr\'{e}-Quillen cohomology, stable cohomology, and Tor algebras, as well as an equality relating the Poincar\'{e} series of the common residue field of $R,S_1,S_2$ and $S$.
Tor无关张量积的同伦李代数
本文研究了一对满射局部环映射$S1\leftarrow R\到S_2$及其与正则投影$S\到S_1\otimes_R S_2$的关系,其中$S_1,S_2$在$R$上是Tor无关的。我们的主要结果断言了$S:=S_1\otimes_R S_2$的同伦李代数之间的结构联系,表示为$\pi(S)$,就$R、S_1$和$S_2$而言。也就是说,$\pi(S)$是在各种情况下,包括当上述映射具有残差特征零时,(调整的)李代数沿着映射$\pi(S_i)\到\pi(R)$的回调。主要定理的结果包括关于Andr{e}-Quillen上同调、稳定上同调和Tor代数,以及与$R、S_1、S_2$和$S$的公共残域的Poincar级数有关的一个等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信