Mauricio Veléz-Terranova, R. Molina, Hugo Alberto González Sánchez, R. Campos, S. Perilla
{"title":"Influence of climatic conditions on tympanic temperature and milk production in grazing cows","authors":"Mauricio Veléz-Terranova, R. Molina, Hugo Alberto González Sánchez, R. Campos, S. Perilla","doi":"10.31893/jabb.21032","DOIUrl":null,"url":null,"abstract":"The present study aimed to analyze large volumes of tympanic temperature (TT) data to identify its use as a physiological indicator of climatic conditions and its relationship with milk production in grazing cows under tropical lowland conditions. Three dairy farms and 21 multiparous early lactation cows were included in the study. Seven animals were equipped with tympanic temperature wireless sensors within each farm, and permanent information was collected hourly for 22 days on average. Ambient temperature (AT), relative humidity (RH), wind speed (WS), precipitation (PP), and THI information were obtained from meteorological stations located close to each farm. Statistical analyses included Spearman correlations and random coefficient regression models (P < 0.05). TT presented moderate and significant correlations with AT (0.35 to 0.49), SR (0.25 to 0.32), THI (0.35 to 0.49), and RH (-0.35 to -0.49). Climatic variables like AT, PP, SR, and WS were the most contributing factors to TT prediction (R2 =0.42 to 0.86). Grazing dairy cows in tropical scenarios accumulate heat during the day and dissipate it at nighttime, although higher producing animals deal with more problems to reach thermal homeostasis. Correlations between TT and daily milk production varied according to animal yield; however, higher TT values were related to the most productive cows. The effect of TT on milk production prediction was not conclusive among farms, possibly by animal management or others characteristics of the systems. TT determination through remote sensors allows a reliable diagnosis of the physiological temperature response to climatic conditions.","PeriodicalId":37772,"journal":{"name":"Journal of Animal Behaviour and Biometeorology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Behaviour and Biometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31893/jabb.21032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 5
Abstract
The present study aimed to analyze large volumes of tympanic temperature (TT) data to identify its use as a physiological indicator of climatic conditions and its relationship with milk production in grazing cows under tropical lowland conditions. Three dairy farms and 21 multiparous early lactation cows were included in the study. Seven animals were equipped with tympanic temperature wireless sensors within each farm, and permanent information was collected hourly for 22 days on average. Ambient temperature (AT), relative humidity (RH), wind speed (WS), precipitation (PP), and THI information were obtained from meteorological stations located close to each farm. Statistical analyses included Spearman correlations and random coefficient regression models (P < 0.05). TT presented moderate and significant correlations with AT (0.35 to 0.49), SR (0.25 to 0.32), THI (0.35 to 0.49), and RH (-0.35 to -0.49). Climatic variables like AT, PP, SR, and WS were the most contributing factors to TT prediction (R2 =0.42 to 0.86). Grazing dairy cows in tropical scenarios accumulate heat during the day and dissipate it at nighttime, although higher producing animals deal with more problems to reach thermal homeostasis. Correlations between TT and daily milk production varied according to animal yield; however, higher TT values were related to the most productive cows. The effect of TT on milk production prediction was not conclusive among farms, possibly by animal management or others characteristics of the systems. TT determination through remote sensors allows a reliable diagnosis of the physiological temperature response to climatic conditions.
期刊介绍:
The Journal of Animal Behaviour and Biometeorology (ISSN 2318-1265) is the official journal of the Center for Applied Animal Biometeorology (Brazil) currently published by Malque Publishing. Our journal is published quarterly, where the published articles are inserted into areas of animal behaviour, animal biometeorology, animal welfare, and ambience: farm animals (mammals, birds, fish, and bees), wildlife (mammals, birds, fish, reptiles, and amphibians), pets, animals in zoos and invertebrate animals. The publication is exclusively digital and articles are freely available to the international community. Manuscript submission implies that the data are unpublished and have not been submitted for publication in other journals. JABB publishes original articles in the form of Original Articles, Short Communications, and Reviews. Original Articles arising from research work should be well grounded in theory and execution should follow the scientific methodology and justification for its objectives; Short Communications should provide sufficient results for a publication in accordance with the Research Article; Reviews should involve the relevant scientific literature on the subject. JABB publishes articles in English only. All articles should be written strictly adopting all the rules of spelling and grammar.