Recurrence Network based 3D Geometry Representation Learning for Quality Control in Additive Manufacturing of Metamaterials

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Yujing Yang, Chen Kan
{"title":"Recurrence Network based 3D Geometry Representation Learning for Quality Control in Additive Manufacturing of Metamaterials","authors":"Yujing Yang, Chen Kan","doi":"10.1115/1.4063236","DOIUrl":null,"url":null,"abstract":"\n Metamaterials are designed with intrinsic geometries to deliver unique properties, and recent years have witnessed an upsurge in leveraging additive manufacturing (AM) to produce metamaterials. However, the frequent occurrence of geometric defects in AM poses a critical obstacle to realizing the desired properties of fabricated metamaterials. Advances in three-dimensional (3D) scanning technologies enable the capture of fine-grained 3D geometric patterns, thereby providing a great opportunity for detecting geometric defects in fabricated metamaterials for property-oriented quality assurance. Realizing the full potential of 3D scanning-based quality control hinges largely on devising effective approaches to process scanned point clouds and extract geometric-pertinent information. In this study, a novel framework is developed to integrate recurrence network-based 3D geometry profiling with deep one-class learning for geometric defect detection in AM of metamaterials. First, we extend existing recurrence network models that focus on image data to representing 3D point clouds, by designing a new mechanism that characterizes points' geometric pattern affinities and spatial proximities. Then, a one-class graph neural network (GNN) approach is tailored to uncover topological variations of the recurrence network and detect anomalies that associated with geometric defects in the fabricated metamaterial. The developed methodology is evaluated through comprehensive simulated and real-world case studies. Experimental results have highlighted the efficacy of the developed methodology in identifying both global and local geometric defects in AM-fabricated metamaterials.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063236","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials are designed with intrinsic geometries to deliver unique properties, and recent years have witnessed an upsurge in leveraging additive manufacturing (AM) to produce metamaterials. However, the frequent occurrence of geometric defects in AM poses a critical obstacle to realizing the desired properties of fabricated metamaterials. Advances in three-dimensional (3D) scanning technologies enable the capture of fine-grained 3D geometric patterns, thereby providing a great opportunity for detecting geometric defects in fabricated metamaterials for property-oriented quality assurance. Realizing the full potential of 3D scanning-based quality control hinges largely on devising effective approaches to process scanned point clouds and extract geometric-pertinent information. In this study, a novel framework is developed to integrate recurrence network-based 3D geometry profiling with deep one-class learning for geometric defect detection in AM of metamaterials. First, we extend existing recurrence network models that focus on image data to representing 3D point clouds, by designing a new mechanism that characterizes points' geometric pattern affinities and spatial proximities. Then, a one-class graph neural network (GNN) approach is tailored to uncover topological variations of the recurrence network and detect anomalies that associated with geometric defects in the fabricated metamaterial. The developed methodology is evaluated through comprehensive simulated and real-world case studies. Experimental results have highlighted the efficacy of the developed methodology in identifying both global and local geometric defects in AM-fabricated metamaterials.
基于递归网络的三维几何表示学习在超材料增材制造质量控制中的应用
超材料的设计具有固有的几何形状,以提供独特的性能,近年来,利用增材制造(AM)生产超材料的热潮正在兴起。然而,在增材制造中,几何缺陷的频繁出现对实现所制造的超材料的预期性能造成了严重的障碍。三维(3D)扫描技术的进步能够捕获细粒度的3D几何图案,从而为检测制造的超材料中的几何缺陷提供了很大的机会,以保证性能导向的质量。实现基于3D扫描的质量控制的全部潜力在很大程度上取决于设计有效的方法来处理扫描点云和提取几何相关信息。在本研究中,开发了一种新的框架,将基于递归网络的三维几何轮廓与深度单类学习相结合,用于超材料增材制造中的几何缺陷检测。首先,我们通过设计一种新的机制来表征点的几何模式亲和性和空间接近性,将现有的专注于图像数据的递归网络模型扩展到表示三维点云。然后,定制了一类图神经网络(GNN)方法来揭示递归网络的拓扑变化,并检测与制造的超材料中的几何缺陷相关的异常。开发的方法是通过全面的模拟和现实世界的案例研究进行评估。实验结果强调了开发的方法在识别am制造的超材料的全局和局部几何缺陷方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信