Giusi Perri, Manuel De Rose, Josipa Domitrovic, R. Vaiana
{"title":"CO2 Impact Analysis for Road Embankment Construction: A Comparative Environmental Assessment of Lignin and Lime Soil Stabilization Treatments","authors":"Giusi Perri, Manuel De Rose, Josipa Domitrovic, R. Vaiana","doi":"10.3390/su15031912","DOIUrl":null,"url":null,"abstract":"The last decade has witnessed increased attention toward products, services, and works with reduced environmental impacts. In the field of road construction, the use of alternative materials, wastes, or by-products obtained from industries is attracting considerable interest. The Life Cycle Assessment (LCA) is a powerful project-level tool that allows the assessment of the environmental impacts of a road infrastructure, from raw materials production to end of life phase. In this study, the environmental impacts (in terms of global warming potential-GWP) of an embankment construction project are investigated by a cradle-to-gate approach. The analysis focuses on all the processes involved in the construction of an embankment section, from the base to the preparation of the pavement formation level. The results are provided for two different road types and two different stabilization methods, including the use of lignin and lime. All processes that contribute towards global warming are investigated and described in detail. The most important finding of the LCA, in terms of GWP, is that the production of materials is the phase that contributes the significant share of the total environmental impact (more than 90%) for all scenarios. The lowest production-related emissions can be recorded for the scenarios involving lignin treatment for the stabilization of the embankment body. Furthermore, the percentage increase in GWP ranges between 51% and 39% for transportation activities and 10–11% for construction activities, comparing the scenarios including lime stabilization with the scenarios involving lignin treatment.","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su15031912","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
The last decade has witnessed increased attention toward products, services, and works with reduced environmental impacts. In the field of road construction, the use of alternative materials, wastes, or by-products obtained from industries is attracting considerable interest. The Life Cycle Assessment (LCA) is a powerful project-level tool that allows the assessment of the environmental impacts of a road infrastructure, from raw materials production to end of life phase. In this study, the environmental impacts (in terms of global warming potential-GWP) of an embankment construction project are investigated by a cradle-to-gate approach. The analysis focuses on all the processes involved in the construction of an embankment section, from the base to the preparation of the pavement formation level. The results are provided for two different road types and two different stabilization methods, including the use of lignin and lime. All processes that contribute towards global warming are investigated and described in detail. The most important finding of the LCA, in terms of GWP, is that the production of materials is the phase that contributes the significant share of the total environmental impact (more than 90%) for all scenarios. The lowest production-related emissions can be recorded for the scenarios involving lignin treatment for the stabilization of the embankment body. Furthermore, the percentage increase in GWP ranges between 51% and 39% for transportation activities and 10–11% for construction activities, comparing the scenarios including lime stabilization with the scenarios involving lignin treatment.
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.