{"title":"On the heat equation with drift in $L_{d+1}$","authors":"N. Krylov","doi":"10.4310/maa.2022.v29.n2.a3","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $\\partial_{t}u, D^{2}u\\in L_{p}$ with $p","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2022.v29.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $\partial_{t}u, D^{2}u\in L_{p}$ with $p