Lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems

IF 0.7 Q2 MATHEMATICS
Xianwen Xie, Hou-biao Li
{"title":"Lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems","authors":"Xianwen Xie, Hou-biao Li","doi":"10.32513/tbilisi/1608606059","DOIUrl":null,"url":null,"abstract":"In this paper, a lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting (LME-HS) iteration method is introduced for solving the complex symmetric linear systems. Under a loose restriction on parameter $\\theta$, we demonstrate that LME-HS iteration method is convergent. Moreover, we present the optimal parameter ${\\theta}^{*}$ of the LME-HS method and discuss the spectral properties of corresponding preconditioned matrix. Finally, the numerical experiments are used to verify the effectiveness of the proposed method.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"13 1","pages":"211-221"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a lopsided modified Euler-extrapolated Hermitian and skew-Hermitian splitting (LME-HS) iteration method is introduced for solving the complex symmetric linear systems. Under a loose restriction on parameter $\theta$, we demonstrate that LME-HS iteration method is convergent. Moreover, we present the optimal parameter ${\theta}^{*}$ of the LME-HS method and discuss the spectral properties of corresponding preconditioned matrix. Finally, the numerical experiments are used to verify the effectiveness of the proposed method.
一类复对称线性系统的不平衡修正欧拉外推厄米和斜厄米分裂方法
本文提出了一种求解复杂对称线性系统的不平衡修正Euler外推Hermitian和斜Hermitian分裂(LME-HS)迭代方法。在参数$\theta$的宽松约束下,我们证明了LME-HS迭代方法是收敛的。此外,我们给出了LME-HS方法的最优参数${theta}^{*}$,并讨论了相应预条件矩阵的谱性质。最后,通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信