Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ming-Deh A. Huang, M. Kosters, C. Petit, S. Yeo, Yang Yun
{"title":"Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem","authors":"Ming-Deh A. Huang, M. Kosters, C. Petit, S. Yeo, Yang Yun","doi":"10.1515/jmc-2015-0049","DOIUrl":null,"url":null,"abstract":"Abstract We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"25 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2015-0049","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2015-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials.
拟子域多项式与椭圆曲线离散对数问题
摘要本文研究了一类新的多项式,我们称之为拟子域多项式。首先,我们证明了这类多项式可以通过指数演算方法对椭圆曲线离散对数问题进行更有效的攻击。具体来说,我们使用这些多项式来构建指数演算方法的因子基,并提供明确的复杂性界限。其次,我们研究了拟子域多项式的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信