Ming-Deh A. Huang, M. Kosters, C. Petit, S. Yeo, Yang Yun
{"title":"Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem","authors":"Ming-Deh A. Huang, M. Kosters, C. Petit, S. Yeo, Yang Yun","doi":"10.1515/jmc-2015-0049","DOIUrl":null,"url":null,"abstract":"Abstract We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"25 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2015-0049","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2015-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials.