Echocardiography machine learning based to improve detection of transthyretin cardiac amyloidosis: The R3M Algorithm

IF 18 Q4 Medicine
A. Fraix , O. Huttin , N. Pace , N. Girerd , L. Filippetti , E. Donal , O. Lairez , T. Damy , C. Selton-Suty
{"title":"Echocardiography machine learning based to improve detection of transthyretin cardiac amyloidosis: The R3M Algorithm","authors":"A. Fraix ,&nbsp;O. Huttin ,&nbsp;N. Pace ,&nbsp;N. Girerd ,&nbsp;L. Filippetti ,&nbsp;E. Donal ,&nbsp;O. Lairez ,&nbsp;T. Damy ,&nbsp;C. Selton-Suty","doi":"10.1016/j.acvdsp.2023.04.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span><span>Transthyretin </span>cardiac amyloidosis<span> (ATTR-CA) is an emerging cause of heart failure. The screening of ATTR-CA remains difficult since its echocardiographic features are analogous to those observed in patients with age- and hypertension-related </span></span>cardiac remodeling.</p></div><div><h3>Method</h3><p>We retrospectively included 264 patients (76<!--> <!-->±<!--> <!-->13 years old, 59% male) referred for suspected ATTR-CA. A supervised machine learning diagnosis algorithm differentiating patients with (<em>n</em> <!-->=<!--> <!-->112) and without (<em>n</em> <!-->=<!--> <!-->152) ATTR-CA was constructed based on echocardiographic data, and subsequently validated in an external multicenter cohort of 455 patients (76<!--> <!-->±<!--> <!-->13 years old, 61% male).</p></div><div><h3>Results</h3><p><span>Patients with ATTR-CA had a lower systolic function (LVEF 47.4</span> <!-->±<!--> <!-->11 vs. 54.3<!--> <!-->±<!--> <!-->12%, <em>P</em> <!-->&lt;<!--> <!-->0.001), left ventricular (LV) global longitudinal strain (GLS) (11.0<!--> <!-->±<!--> <!-->3.7 vs. 14.2<!--> <!-->±<!--> <!-->4.5%, <em>P</em> <!-->&lt;<!--> <!-->0.001) and more significant relative apical longitudinal sparing (RALS) (1.5<!--> <!-->±<!--> <!-->1.2 vs. 0.9<!--> <!-->±<!--> <!-->0.4, <em>P</em> <!-->&lt;<!--> <!-->0.001) compared to controls. Machine learning identified right ventricular free wall thickness (RVFWT), RALS, relative wall thickness (RWT), and LV mass index as key variables for identifying ATTR-CA (AUC 0.88 [0.84–0.92]; <em>P</em> <!-->&lt;<!--> <!-->0.001). The diagnostic value of this R3M (RVFWT, RALS, RWT and LV Mass index) algorithm was good in the validation multicenter cohort with an AUC of 0.79 [0.75–0.83] <em>P</em> <!-->&lt;<!--> <!-->0.001. The R3M algorithm further improved diagnostic accuracy over the IWT (Increased Wall Thickness) guidelines score (increase in C-index of 0.15 [0.10–0.21], <em>P</em> <!-->&lt;<!--> <!-->0.001).</p></div><div><h3>Conclusion</h3><p>The simple R3M algorithm based on echocardiographic data exploring RVFWT, apical sparing, and concentric hypertrophy displays good diagnostic accuracy for ATTR-CA and could represent an efficient screening tool (<span>Fig. 1</span>).</p></div>","PeriodicalId":8140,"journal":{"name":"Archives of Cardiovascular Diseases Supplements","volume":"15 3","pages":"Pages 248-249"},"PeriodicalIF":18.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Diseases Supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878648023001519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Transthyretin cardiac amyloidosis (ATTR-CA) is an emerging cause of heart failure. The screening of ATTR-CA remains difficult since its echocardiographic features are analogous to those observed in patients with age- and hypertension-related cardiac remodeling.

Method

We retrospectively included 264 patients (76 ± 13 years old, 59% male) referred for suspected ATTR-CA. A supervised machine learning diagnosis algorithm differentiating patients with (n = 112) and without (n = 152) ATTR-CA was constructed based on echocardiographic data, and subsequently validated in an external multicenter cohort of 455 patients (76 ± 13 years old, 61% male).

Results

Patients with ATTR-CA had a lower systolic function (LVEF 47.4 ± 11 vs. 54.3 ± 12%, P < 0.001), left ventricular (LV) global longitudinal strain (GLS) (11.0 ± 3.7 vs. 14.2 ± 4.5%, P < 0.001) and more significant relative apical longitudinal sparing (RALS) (1.5 ± 1.2 vs. 0.9 ± 0.4, P < 0.001) compared to controls. Machine learning identified right ventricular free wall thickness (RVFWT), RALS, relative wall thickness (RWT), and LV mass index as key variables for identifying ATTR-CA (AUC 0.88 [0.84–0.92]; P < 0.001). The diagnostic value of this R3M (RVFWT, RALS, RWT and LV Mass index) algorithm was good in the validation multicenter cohort with an AUC of 0.79 [0.75–0.83] P < 0.001. The R3M algorithm further improved diagnostic accuracy over the IWT (Increased Wall Thickness) guidelines score (increase in C-index of 0.15 [0.10–0.21], P < 0.001).

Conclusion

The simple R3M algorithm based on echocardiographic data exploring RVFWT, apical sparing, and concentric hypertrophy displays good diagnostic accuracy for ATTR-CA and could represent an efficient screening tool (Fig. 1).

基于超声心动图机器学习提高转甲状腺素型心脏淀粉样变性的检测:R3M算法
转甲状腺素型心脏淀粉样变性(atr - ca)是一种新出现的心力衰竭病因。atr - ca的筛查仍然很困难,因为其超声心动图特征与年龄和高血压相关的心脏重构患者相似。方法回顾性分析264例疑似atr - ca患者(76±13岁,男性59%)。基于超声心动图数据构建了一种有监督的机器学习诊断算法,用于区分atr - ca患者(n = 112)和非atr - ca患者(n = 152),随后在455例患者(76±13岁,61%男性)的外部多中心队列中进行验证。结果atr - ca患者的收缩功能较低(LVEF 47.4±11 vs. 54.3±12%,P <0.001),左室(LV)整体纵向应变(GLS)(11.0±3.7 vs. 14.2±4.5%,P <0.001)和更显著的相对根尖纵向保留(RALS)(1.5±1.2 vs 0.9±0.4,P <0.001)。机器学习识别出右心室游离壁厚(RVFWT)、RALS、相对壁厚(RWT)和左室质量指数作为识别atr - ca的关键变量(AUC 0.88 [0.84-0.92];P & lt;0.001)。该R3M (RVFWT、RALS、RWT和LV质量指数)算法在验证多中心队列中的诊断价值较好,AUC为0.79 [0.75-0.83]P <0.001. R3M算法进一步提高了IWT(壁厚增加)指南评分的诊断准确性(c指数增加0.15 [0.10-0.21],P <0.001)。结论基于超声心动图数据探索RVFWT、根尖保留和同心肥厚的简单R3M算法对atr - ca具有良好的诊断准确性,是一种有效的筛查工具(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Cardiovascular Diseases Supplements
Archives of Cardiovascular Diseases Supplements CARDIAC & CARDIOVASCULAR SYSTEMS-
自引率
0.00%
发文量
508
期刊介绍: Archives of Cardiovascular Diseases Supplements is the official journal of the French Society of Cardiology. The journal publishes original peer-reviewed clinical and research articles, epidemiological studies, new methodological clinical approaches, review articles, editorials, and Images in cardiovascular medicine. The topics covered include coronary artery and valve diseases, interventional and pediatric cardiology, cardiovascular surgery, cardiomyopathy and heart failure, arrhythmias and stimulation, cardiovascular imaging, vascular medicine and hypertension, epidemiology and risk factors, and large multicenter studies. Additionally, Archives of Cardiovascular Diseases also publishes abstracts of papers presented at the annual sessions of the Journées Européennes de la Société Française de Cardiologie and the guidelines edited by the French Society of Cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信