Pengenalan Gestur Angka Pada Tangan Menggunakan Arsitektur AlexNet Dan LeNet Pada Metode Convolutional Neural Network

M. E. Al Rivan, A. Setiawan
{"title":"Pengenalan Gestur Angka Pada Tangan Menggunakan Arsitektur AlexNet Dan LeNet Pada Metode Convolutional Neural Network","authors":"M. E. Al Rivan, A. Setiawan","doi":"10.34010/komputika.v11i1.5176","DOIUrl":null,"url":null,"abstract":"Gestur merupakan salah satu jenis komunikasi dengan membentuk suatu objek seperti huruf atau angka pada tangan untuk menyampaikan pesan ataupun sebuah informasi, salah satunya gestur angka pada tangan yang memiliki banyak jenisnya dengan pola yang berbeda untuk setiap pergerakan angka yang terbentuk. Salah satu solusi yang dapat dilakukan untuk melakukan pengenalan gestur angka pada tangan kepada komputer adalah menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur AlexNet maupun LeNet. Penelitian ini menggunakan dataset citra gestur angka yang sebelumnya dilakukan tahap pre-processing yang terdiri dari threshold dan resize. Penelitian dilakukan menggunakan 2 pooling layer, yaitu Average Pooling dan Max Pooling kemudian menggunakan optimizer, yaitu SGD, RMSprop, dan Adam. Berdasarkan hasil pengujian yang didapatkan pada penelitian ini, yaitu penggunaan arsitektur AlexNet dengan Average Pooling dan optimizer RMSprop menghasilkan akuras dan f1-score keseluruhan 99,45% serta penggunaan arsitektur LeNet dengan Average Pooling dan optimizer RMSprop menghasilkan akurasi dan f1-score keseluruhan 99,49%. Secara keseluruhan penggunaan Average Pooling dengan optimizer RMSprop mendapatkan tingkat akurasi yang paling baik dibandingkan dengan pengujian yang lainnya.","PeriodicalId":52813,"journal":{"name":"Komputika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v11i1.5176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Gestur merupakan salah satu jenis komunikasi dengan membentuk suatu objek seperti huruf atau angka pada tangan untuk menyampaikan pesan ataupun sebuah informasi, salah satunya gestur angka pada tangan yang memiliki banyak jenisnya dengan pola yang berbeda untuk setiap pergerakan angka yang terbentuk. Salah satu solusi yang dapat dilakukan untuk melakukan pengenalan gestur angka pada tangan kepada komputer adalah menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur AlexNet maupun LeNet. Penelitian ini menggunakan dataset citra gestur angka yang sebelumnya dilakukan tahap pre-processing yang terdiri dari threshold dan resize. Penelitian dilakukan menggunakan 2 pooling layer, yaitu Average Pooling dan Max Pooling kemudian menggunakan optimizer, yaitu SGD, RMSprop, dan Adam. Berdasarkan hasil pengujian yang didapatkan pada penelitian ini, yaitu penggunaan arsitektur AlexNet dengan Average Pooling dan optimizer RMSprop menghasilkan akuras dan f1-score keseluruhan 99,45% serta penggunaan arsitektur LeNet dengan Average Pooling dan optimizer RMSprop menghasilkan akurasi dan f1-score keseluruhan 99,49%. Secara keseluruhan penggunaan Average Pooling dengan optimizer RMSprop mendapatkan tingkat akurasi yang paling baik dibandingkan dengan pengujian yang lainnya.
手写数字手势,使用AlexNet架构和LeNet在神经转换网络方法
手势是一种通过在手上形成一个像字母或数字这样的物体来传达信息或信息的交流方式,手上的数字手势有很多,每种形式的数字移动都有不同的模式。可以通过手对计算机识别数字手势的解决方案之一是使用具有AlexNet或LeNet架构的卷积神经网络(CNN)方法。本研究使用了一个数字手势图像集,该图像集之前进行了由阈值和大小调整组成的预处理阶段。该研究使用了两个池化层,即平均池化和最大池化,然后使用优化器,即SGD、RMSprop和Adam。根据本研究中获得的测试结果,即使用带有Average Pooling的AlexNet架构和RMSprop优化器,总体准确率和f1得分为99.45%,使用带有AveragePooling的LeNet架构和RMSprop优化器的准确率和f1得分为99.49%。总体而言,与其他测试相比,使用RMSprop优化器的Average Pooling可以获得最佳的准确性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信