A comparison of regression models for the ice loads measured during the ice tank test

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE
Brodogradnja Pub Date : 2023-06-01 DOI:10.21278/brod74301
Seung Jae Lee, K. Jung, Namkug Ku, Jaeyong Lee
{"title":"A comparison of regression models for the ice loads measured during the ice tank test","authors":"Seung Jae Lee, K. Jung, Namkug Ku, Jaeyong Lee","doi":"10.21278/brod74301","DOIUrl":null,"url":null,"abstract":"To evaluate the time-domain positioning performance of arctic marine structures, it is necessary to generate an ice load appropriate for the current position and heading of the structure. The position and orientation angle of a floating body continuously change with time. Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, we present a fundamental technique for analyzing ice loads in the frequency domain based on data measured at various angles in the ice-water tank experiment. We perform spectral analysis instead of general FFT to analyze the ice load, which has the characteristics of a random signal. To generate the necessary ice load in the time domain, we must first interpolate the measured data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum for the measured data, then process the data to generate the training set required for machine learning. Based on the results, we perform regression analysis by applying four representative techniques, including linear regression, random forest, or neural network, and compare the results with MSE. The deep neural network method performed best, but we provide further discussion for each model.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74301","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate the time-domain positioning performance of arctic marine structures, it is necessary to generate an ice load appropriate for the current position and heading of the structure. The position and orientation angle of a floating body continuously change with time. Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, we present a fundamental technique for analyzing ice loads in the frequency domain based on data measured at various angles in the ice-water tank experiment. We perform spectral analysis instead of general FFT to analyze the ice load, which has the characteristics of a random signal. To generate the necessary ice load in the time domain, we must first interpolate the measured data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum for the measured data, then process the data to generate the training set required for machine learning. Based on the results, we perform regression analysis by applying four representative techniques, including linear regression, random forest, or neural network, and compare the results with MSE. The deep neural network method performed best, but we provide further discussion for each model.
冰槽试验中冰荷载回归模型的比较
为了评估北极海洋结构的时域定位性能,有必要生成适合该结构当前位置和航向的冰荷载。浮体的位置和方位角随时间不断变化。因此,在时域模拟中,任何姿态都需要冰载荷。在这项研究中,我们提出了一种基于冰水箱实验中不同角度测量的数据在频域中分析冰荷载的基本技术。我们用频谱分析代替一般的FFT来分析冰荷载,它具有随机信号的特性。为了在时域中产生必要的冰荷载,我们必须首先在频域中对测量数据进行插值。使用Blackman-Tukey方法,我们估计测量数据的频谱,然后处理数据以生成机器学习所需的训练集。基于这些结果,我们通过应用四种代表性技术进行回归分析,包括线性回归、随机森林或神经网络,并将结果与MSE进行比较。深度神经网络方法表现最好,但我们为每个模型提供了进一步的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信