{"title":"An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model","authors":"Chenglong Bao, Chang Chen, Kai Jiang","doi":"10.4208/csiam-am.so-2021-0002","DOIUrl":null,"url":null,"abstract":"In this paper, we compute the stationary states of the multicomponent phase-field crystal model by formulating it as a block constrained minimization problem. The original infinite-dimensional non-convex minimization problem is approximated by a finite-dimensional constrained non-convex minimization problem after an appropriate spatial discretization. To efficiently solve the above optimization problem, we propose a so-called adaptive block Bregman proximal gradient (AB-BPG) algorithm that fully exploits the problem's block structure. The proposed method updates each order parameter alternatively, and the update order of blocks can be chosen in a deterministic or random manner. Besides, we choose the step size by developing a practical linear search approach such that the generated sequence either keeps energy dissipation or has a controllable subsequence with energy dissipation. The convergence property of the proposed method is established without the requirement of global Lipschitz continuity of the derivative of the bulk energy part by using the Bregman divergence. The numerical results on computing stationary ordered structures in binary, ternary, and quinary component coupled-mode Swift-Hohenberg models have shown a significant acceleration over many existing methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2021-0002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we compute the stationary states of the multicomponent phase-field crystal model by formulating it as a block constrained minimization problem. The original infinite-dimensional non-convex minimization problem is approximated by a finite-dimensional constrained non-convex minimization problem after an appropriate spatial discretization. To efficiently solve the above optimization problem, we propose a so-called adaptive block Bregman proximal gradient (AB-BPG) algorithm that fully exploits the problem's block structure. The proposed method updates each order parameter alternatively, and the update order of blocks can be chosen in a deterministic or random manner. Besides, we choose the step size by developing a practical linear search approach such that the generated sequence either keeps energy dissipation or has a controllable subsequence with energy dissipation. The convergence property of the proposed method is established without the requirement of global Lipschitz continuity of the derivative of the bulk energy part by using the Bregman divergence. The numerical results on computing stationary ordered structures in binary, ternary, and quinary component coupled-mode Swift-Hohenberg models have shown a significant acceleration over many existing methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.