Inverse limit slender groups

IF 0.5 3区 数学 Q3 MATHEMATICS
G. Conner, W. Herfort, Curtis Kent, Peter Pavesic
{"title":"Inverse limit slender groups","authors":"G. Conner, W. Herfort, Curtis Kent, Peter Pavesic","doi":"10.4064/fm118-12-2022","DOIUrl":null,"url":null,"abstract":"Classically, an abelian group $G$ is said to be slender if every homomorphism from the countable product $\\mathbb Z^{\\mathbb N}$ to $G$ factors through the projection to some finite product $\\mathbb Z^n$. Various authors have proposed generalizations to non-commutative groups, resulting in a plethora of similar but not completely equivalent concepts. In the first part of this work we present a unified treatment of these concepts and examine how are they related. In the second part of the paper we study slender groups in the context of co-small objects in certain categories, and give several new applications including the proof that certain homology groups of Barratt-Milnor spaces are cotorsion groups and a universal coefficients theorem for \\v{C}ech cohomology with coefficients in a slender group.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm118-12-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Classically, an abelian group $G$ is said to be slender if every homomorphism from the countable product $\mathbb Z^{\mathbb N}$ to $G$ factors through the projection to some finite product $\mathbb Z^n$. Various authors have proposed generalizations to non-commutative groups, resulting in a plethora of similar but not completely equivalent concepts. In the first part of this work we present a unified treatment of these concepts and examine how are they related. In the second part of the paper we study slender groups in the context of co-small objects in certain categories, and give several new applications including the proof that certain homology groups of Barratt-Milnor spaces are cotorsion groups and a universal coefficients theorem for \v{C}ech cohomology with coefficients in a slender group.
逆极限细长群
经典地说,如果从可数积$\mathbb Z^{\mathbb N}$到$G$的所有同态通过投影到某个有限积$\mathbb Z^ N $,则一个阿贝尔群$G$是细长的。许多作者提出了对非交换群的推广,导致了大量相似但不完全等价的概念。在这项工作的第一部分,我们提出了这些概念的统一处理,并检查它们是如何相关的。在第二部分中,我们研究了特定范畴中共小对象下的细长群,给出了若干新的应用,包括证明Barratt-Milnor空间的某些同调群是扭转群,以及在细长群中\v{C}ech上同调与系数的一个普适系数定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信