The reversibility of one-dimensional cellular automata

Alexey E. Zhukov
{"title":"The reversibility of one-dimensional cellular automata","authors":"Alexey E. Zhukov","doi":"10.22363/2312-8143-2021-22-1-7-15","DOIUrl":null,"url":null,"abstract":"Recently the reversible cellular automata are increasingly used to build high-performance cryptographic algorithms. The paper establishes a connection between the reversibility of homogeneous one-dimensional binary cellular automata of a finite size and the properties of a structure called binary filter with input memory and such finite automata properties as the prohibitions in automata output and loss of information. We show that finding the preimage for an arbitrary configuration of a one-dimensional cellular automaton of length L with a local transition function f is associated with reversibility of a binary filter with input memory. As a fact, the nonlinear filter with an input memory corresponding to our cellular automaton does not depend on the number of memory cells of the cellular automaton. The results obtained make it possible to reduce the complexity of solving massive enumeration problems related to the issues of reversibility of cellular automata. All the results obtained can be transferred to cellular automata with non-binary cell filling and to cellular automata of dimension greater than 1.","PeriodicalId":53011,"journal":{"name":"RUDN Journal of Engineering Researches","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RUDN Journal of Engineering Researches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2312-8143-2021-22-1-7-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently the reversible cellular automata are increasingly used to build high-performance cryptographic algorithms. The paper establishes a connection between the reversibility of homogeneous one-dimensional binary cellular automata of a finite size and the properties of a structure called binary filter with input memory and such finite automata properties as the prohibitions in automata output and loss of information. We show that finding the preimage for an arbitrary configuration of a one-dimensional cellular automaton of length L with a local transition function f is associated with reversibility of a binary filter with input memory. As a fact, the nonlinear filter with an input memory corresponding to our cellular automaton does not depend on the number of memory cells of the cellular automaton. The results obtained make it possible to reduce the complexity of solving massive enumeration problems related to the issues of reversibility of cellular automata. All the results obtained can be transferred to cellular automata with non-binary cell filling and to cellular automata of dimension greater than 1.
一维元胞自动机的可逆性
近年来,可逆元胞自动机越来越多地被用于构建高性能的密码算法。本文建立了有限大小的齐次一维二元元胞自动机的可逆性与具有输入记忆的二元滤波器结构的性质以及自动机输出和信息丢失中禁止的有限自动机性质之间的联系。我们证明,对于具有局部转移函数f的长度为L的一维元胞自动机的任意配置,找到前像与具有输入记忆的二进制滤波器的可逆性有关。事实上,具有与我们的元胞自动机相对应的输入存储器的非线性滤波器不取决于元胞自动机的存储器单元的数量。所获得的结果使得解决与元胞自动机可逆性问题相关的大量枚举问题的复杂性成为可能。所有获得的结果都可以转移到具有非二进制细胞填充的细胞自动机和维度大于1的细胞自动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信