{"title":"Revisiting the Eden Project: The geometry of the Domes","authors":"Jaime Sanchez-Alvarez","doi":"10.1177/09560599221110220","DOIUrl":null,"url":null,"abstract":"The Eden Project in Cornwall, UK, has probably the largest greenhouse complex in the world, comprehending eight interconnected spherical geodesic domes. The geometric design and optimisation of the double-layered spherical structures focussed primarily on the hexagonal grids of the external dome surfaces, where optimisation consisted of minimising the number of component types, being these components, faces, line lengths and angle combinations at grid nodes. The present article reviews the general geometric definition of the Eden Domes and elaborates, for the first time since the domes design around the year 2000, on their geometric optimisation. The results of this rationalisation are presented in colour images, which were produced with state-of-the-art (2021) software tools 20 years after the design development. The images reveal the geometric ‘economy’ – here, the extreme reduction of geometric component types – and the high symmetrical order of these structural configurations. The aim of the present paper is to present the thorough geometric specification of the Eden Domes in a single document that answers in detail the question of how the Eden Domes grids were geometrically constructed.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"37 1","pages":"283 - 303"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599221110220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1
Abstract
The Eden Project in Cornwall, UK, has probably the largest greenhouse complex in the world, comprehending eight interconnected spherical geodesic domes. The geometric design and optimisation of the double-layered spherical structures focussed primarily on the hexagonal grids of the external dome surfaces, where optimisation consisted of minimising the number of component types, being these components, faces, line lengths and angle combinations at grid nodes. The present article reviews the general geometric definition of the Eden Domes and elaborates, for the first time since the domes design around the year 2000, on their geometric optimisation. The results of this rationalisation are presented in colour images, which were produced with state-of-the-art (2021) software tools 20 years after the design development. The images reveal the geometric ‘economy’ – here, the extreme reduction of geometric component types – and the high symmetrical order of these structural configurations. The aim of the present paper is to present the thorough geometric specification of the Eden Domes in a single document that answers in detail the question of how the Eden Domes grids were geometrically constructed.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.