Compositional Zero-Shot Domain Transfer with Text-to-Text Models

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando Pérez-García, Naoto Usuyama, Shenmin Zhang, Tristan Naumann, A. Nori, Hoifung Poon, J. Alvarez-Valle, O. Oktay, Stephanie L. Hyland
{"title":"Compositional Zero-Shot Domain Transfer with Text-to-Text Models","authors":"Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando Pérez-García, Naoto Usuyama, Shenmin Zhang, Tristan Naumann, A. Nori, Hoifung Poon, J. Alvarez-Valle, O. Oktay, Stephanie L. Hyland","doi":"10.1162/tacl_a_00585","DOIUrl":null,"url":null,"abstract":"Abstract Label scarcity is a bottleneck for improving task performance in specialized domains. We propose a novel compositional transfer learning framework (DoT51) for zero-shot domain transfer. Without access to in-domain labels, DoT5 jointly learns domain knowledge (from masked language modelling of unlabelled in-domain free text) and task knowledge (from task training on more readily available general-domain data) in a multi-task manner. To improve the transferability of task training, we design a strategy named NLGU: We simultaneously train natural language generation (NLG) for in-domain label-to-data generation, which enables data augmentation for self-finetuning and natural language understanding (NLU) for label prediction. We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on natural language inference, text summarization, and embedding learning. DoT5 demonstrates the effectiveness of compositional transfer learning through multi-task learning. In particular, DoT5 outperforms the current state-of-the-art in zero-shot transfer by over 7 absolute points in accuracy on RadNLI. We validate DoT5 with ablations and a case study demonstrating its ability to solve challenging NLI examples requiring in-domain expertise.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"1097-1113"},"PeriodicalIF":4.2000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00585","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Label scarcity is a bottleneck for improving task performance in specialized domains. We propose a novel compositional transfer learning framework (DoT51) for zero-shot domain transfer. Without access to in-domain labels, DoT5 jointly learns domain knowledge (from masked language modelling of unlabelled in-domain free text) and task knowledge (from task training on more readily available general-domain data) in a multi-task manner. To improve the transferability of task training, we design a strategy named NLGU: We simultaneously train natural language generation (NLG) for in-domain label-to-data generation, which enables data augmentation for self-finetuning and natural language understanding (NLU) for label prediction. We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on natural language inference, text summarization, and embedding learning. DoT5 demonstrates the effectiveness of compositional transfer learning through multi-task learning. In particular, DoT5 outperforms the current state-of-the-art in zero-shot transfer by over 7 absolute points in accuracy on RadNLI. We validate DoT5 with ablations and a case study demonstrating its ability to solve challenging NLI examples requiring in-domain expertise.
文本到文本模型的组合零射击域转移
摘要标签稀缺是提高专业领域任务性能的瓶颈。我们提出了一种新的用于零样本域转移的组合转移学习框架(DoT51)。在没有访问域内标签的情况下,DoT5以多任务的方式联合学习域知识(来自未标记的域内自由文本的掩蔽语言建模)和任务知识(来自对更容易获得的通用域数据的任务训练)。为了提高任务训练的可转移性,我们设计了一种名为NLGU的策略:我们同时训练用于域内标签到数据生成的自然语言生成(NLG),这使得能够进行自微调的数据扩充和用于标签预测的自然语言理解(NLU)。我们在生物医学领域和放射学的资源节约型子域上评估了DoT5,重点是自然语言推理、文本摘要和嵌入学习。DoT5通过多任务学习证明了作文迁移学习的有效性。特别是,DoT5在RadNLI上的精度超过7个绝对点,在零样本传输方面优于当前最先进的技术。我们通过消融和一个案例研究验证了DoT5,证明了其解决需要领域内专业知识的具有挑战性的NLI示例的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信