Nilpotent Graph

Q4 Mathematics
D. Basnet, Ajay Sharma, Rahul Dutta
{"title":"Nilpotent Graph","authors":"D. Basnet, Ajay Sharma, Rahul Dutta","doi":"10.20429/tag.2021.080102","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the concept of nilpotent graph of a finite commutative ring. The set of all non nilpotent elements of a ring is taken as the vertex set and two vertices are adjacent if and only if their sum is nilpotent. We discuss some graph theoretic properties of nilpotent graph.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2021.080102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we introduce the concept of nilpotent graph of a finite commutative ring. The set of all non nilpotent elements of a ring is taken as the vertex set and two vertices are adjacent if and only if their sum is nilpotent. We discuss some graph theoretic properties of nilpotent graph.
幂零图
本文引入了有限交换环的幂零图的概念。将环的所有非幂零元素的集合作为顶点集,并且两个顶点是相邻的当且仅当它们的和是幂零的。讨论了幂零图的一些图论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信