G. N. Ogwo, H. A. Abass, C. Izuchukwu, O. T. Mewomo
{"title":"Modified Proximal Point Methods Involving Quasi-pseudocontractive Mappings in Hadamard Spaces","authors":"G. N. Ogwo, H. A. Abass, C. Izuchukwu, O. T. Mewomo","doi":"10.1007/s40306-022-00480-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose two new proximal point methods involving quasi-pseudocontractive mappings in Hadamard spaces. We prove that the first method converges strongly to a common solution of a finite family of minimization problems and fixed point problem for a finite family of quasi-pseudocontractive mappings in an Hadamard space. We then extend this method to a more general method involving multivalued monotone operators to approximate the solution of monotone inclusion problem, which is an important optimization problem. We establish that this method converges strongly to a common zero of a finite family of multivalued monotone operators which is also a common fixed point of a finite family of quasi-pseudocontractive mappings in an Hadamard space. Furthermore, we provide various nontrivial numerical implementations of our method in Hadamard spaces (which are non-Hilbert) and compare them with some other recent methods in the literature.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"47 4","pages":"847 - 873"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40306-022-00480-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-022-00480-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose two new proximal point methods involving quasi-pseudocontractive mappings in Hadamard spaces. We prove that the first method converges strongly to a common solution of a finite family of minimization problems and fixed point problem for a finite family of quasi-pseudocontractive mappings in an Hadamard space. We then extend this method to a more general method involving multivalued monotone operators to approximate the solution of monotone inclusion problem, which is an important optimization problem. We establish that this method converges strongly to a common zero of a finite family of multivalued monotone operators which is also a common fixed point of a finite family of quasi-pseudocontractive mappings in an Hadamard space. Furthermore, we provide various nontrivial numerical implementations of our method in Hadamard spaces (which are non-Hilbert) and compare them with some other recent methods in the literature.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.