Exponential and logarithm of multivector in low-dimensional (n = p + q < 3) Clifford algebras

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Dargys, A. Acus
{"title":"Exponential and logarithm of multivector in low-dimensional (n = p + q < 3) Clifford algebras","authors":"A. Dargys, A. Acus","doi":"10.15388/namc.2022.27.29528","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to give a uniform picture of complex, hyperbolic, and quaternion algebras from a perspective of the applied Clifford geometric algebra. Closed form expressions for a multivector exponential and logarithm are presented in real geometric algebras Clp;q when n = p + q = 1 (complex and hyperbolic numbers) and n = 2 (Hamilton, split, and conectorine quaternions). Starting from Cl0;1 and Cl1;0 algebras wherein square of a basis vector is either –1 or +1, we have generalized exponential and logarithm formulas to 2D quaternionic algebras Cl0;2, Cl1;1, and Cl2;0. The sectors in the multivector coefficient space, where 2D logarithm exists are found. They are related with a square root of the multivector.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.29528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of the paper is to give a uniform picture of complex, hyperbolic, and quaternion algebras from a perspective of the applied Clifford geometric algebra. Closed form expressions for a multivector exponential and logarithm are presented in real geometric algebras Clp;q when n = p + q = 1 (complex and hyperbolic numbers) and n = 2 (Hamilton, split, and conectorine quaternions). Starting from Cl0;1 and Cl1;0 algebras wherein square of a basis vector is either –1 or +1, we have generalized exponential and logarithm formulas to 2D quaternionic algebras Cl0;2, Cl1;1, and Cl2;0. The sectors in the multivector coefficient space, where 2D logarithm exists are found. They are related with a square root of the multivector.
低维(n=p+q<3)Clifford代数中多向量的指数和对数
本文的目的是从应用克利福德几何代数的角度给出复,双曲和四元数代数的统一图像。在实际几何代数Clp;q中,当n = p + q = 1(复数和双曲数)和n = 2 (Hamilton、split和concontorine四元数)时,给出了多向量指数和对数的封闭形式表达式。从基向量的平方为-1或+1的Cl0代数开始,我们将指数和对数公式推广到二维四元代数Cl0;2, Cl1;1和Cl2;0。找到了多向量系数空间中存在二维对数的扇区。它们与多向量的平方根有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信