Previsão de velocidades de tráfego com rede neural LSTM encoder-decoder

Douglas Zechin, Matheus Basso do Amaral, Helena Beatriz Bettella Cybis
{"title":"Previsão de velocidades de tráfego com rede neural LSTM encoder-decoder","authors":"Douglas Zechin, Matheus Basso do Amaral, Helena Beatriz Bettella Cybis","doi":"10.14295/transportes.v30i3.2660","DOIUrl":null,"url":null,"abstract":"Este artigo tem como objetivo propor uma modelo de previsão de velocidades para um trecho de rodovia na cidade de Porto Alegre, que apresenta congestionamentos diariamente por conta de gargalos. Para realizar as previsões foram utilizados dados de tráfego e variáveis ambientais, como intensidade de chuva, acidentes e eventos atípicos. Propôs-se então um modelo de rede neural com arquitetura encoder-decoder e camadas long short-term memory (LSTM), que possuem a característica de estabelecer relações de longa dependência temporal entre as variáveis de entrada, sendo pertinentes para aplicações na área de Transportes. Como contribuições adicionais, avaliou-se a qualidade das previsões para diferentes horizontes de predição e regimes de tráfego, e comparou-se a capacidade e as curvas de probabilidade de breakdown calculadas com dados de campo e previstos. A metodologia apresentou desempenho satisfatório com base em ambos os critérios, sendo capaz de fazer boas previsões mesmo em situações críticas de tráfego.","PeriodicalId":30302,"journal":{"name":"Transportes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/transportes.v30i3.2660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Este artigo tem como objetivo propor uma modelo de previsão de velocidades para um trecho de rodovia na cidade de Porto Alegre, que apresenta congestionamentos diariamente por conta de gargalos. Para realizar as previsões foram utilizados dados de tráfego e variáveis ambientais, como intensidade de chuva, acidentes e eventos atípicos. Propôs-se então um modelo de rede neural com arquitetura encoder-decoder e camadas long short-term memory (LSTM), que possuem a característica de estabelecer relações de longa dependência temporal entre as variáveis de entrada, sendo pertinentes para aplicações na área de Transportes. Como contribuições adicionais, avaliou-se a qualidade das previsões para diferentes horizontes de predição e regimes de tráfego, e comparou-se a capacidade e as curvas de probabilidade de breakdown calculadas com dados de campo e previstos. A metodologia apresentou desempenho satisfatório com base em ambos os critérios, sendo capaz de fazer boas previsões mesmo em situações críticas de tráfego.
使用LSTM编码器-解码器神经网络预测交通速度
本文旨在为阿雷格里港市的一段高速公路提出一个速度预测模型,该模型显示了由于瓶颈导致的每日拥堵。交通数据和环境变量,如降雨强度、事故和非典型事件,用于进行预测。然后提出了一种具有编码器-解码器架构和长短期记忆层(LSTM)的神经网络模型,该模型具有在输入变量之间建立长时间依赖关系的特性,与交通领域的应用相关。作为额外贡献,我们评估了不同预测范围和交通状况的预测质量,并比较了现场和预测数据计算的故障容量和概率曲线。该方法在这两个标准的基础上都表现出了令人满意的性能,即使在关键的交通情况下也能做出良好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信