{"title":"A note on Lyapunov-type inequalities for fractional boundary value problems with Sturm-Liouville boundary conditions","authors":"Anil Chavada, Nimisha Pathak","doi":"10.30495/JME.V0I0.1634","DOIUrl":null,"url":null,"abstract":"In this note, we consider fractional Strum-Liouville boundary value problem containing Caputo derivative of order $\\alpha$, $ 1<\\alpha\\leq 2$ with mixed boundary conditions. We establish Cauchy-Schwarz-type inequality to determine a lower bound for the smallest eigenvalues. We give comparison between the smallest eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-type inequalities. Result shows that the Lyapunov-type inequality gives the worse and Cauchy-Schwarz-type inequality gives better lower bound estimates for the smallest eigenvalues. We then use these inequalities to obtain an interval where a linear combination of certain Mittag-Leffler functions have no real zeros.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we consider fractional Strum-Liouville boundary value problem containing Caputo derivative of order $\alpha$, $ 1<\alpha\leq 2$ with mixed boundary conditions. We establish Cauchy-Schwarz-type inequality to determine a lower bound for the smallest eigenvalues. We give comparison between the smallest eigenvalues and its lower bounds obtained from the Lyapunov-type and Cauchy-Schwarz-type inequalities. Result shows that the Lyapunov-type inequality gives the worse and Cauchy-Schwarz-type inequality gives better lower bound estimates for the smallest eigenvalues. We then use these inequalities to obtain an interval where a linear combination of certain Mittag-Leffler functions have no real zeros.