Endpoint $\ell^r$ improving estimates for prime averages

Pub Date : 2021-01-25 DOI:10.4310/mrl.2022.v29.n6.a6
M. Lacey, H. Mousavi, Yaghoub Rahimi
{"title":"Endpoint $\\ell^r$ improving estimates for prime averages","authors":"M. Lacey, H. Mousavi, Yaghoub Rahimi","doi":"10.4310/mrl.2022.v29.n6.a6","DOIUrl":null,"url":null,"abstract":"Let $ \\Lambda $ denote von Mangoldt's function, and consider the averages \\begin{align*} A_N f (x)&=\\frac{1}{N}\\sum_{1\\leq n \\leq N}f(x-n)\\Lambda(n) . \\end{align*} We prove sharp $ \\ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\\subset [0,N]$ there holds \\begin{equation*} N ^{-1} \\langle A_N \\mathbf 1_{F} , \\mathbf 1_{G} \\rangle \\ll \\frac{\\lvert F\\rvert \\cdot \\lvert G\\rvert} { N ^2 } \\Bigl( \\operatorname {Log} \\frac{\\lvert F\\rvert \\cdot \\lvert G\\rvert} { N ^2 } \\Bigr) ^{t}, \\end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \\sup_N A_N \\mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $ \Lambda $ denote von Mangoldt's function, and consider the averages \begin{align*} A_N f (x)&=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*} We prove sharp $ \ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\subset [0,N]$ there holds \begin{equation*} N ^{-1} \langle A_N \mathbf 1_{F} , \mathbf 1_{G} \rangle \ll \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigl( \operatorname {Log} \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigr) ^{t}, \end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \sup_N A_N \mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.
分享
查看原文
端点$\ well ^r$改善素数平均值的估计
设$ \Lambda $表示von Mangoldt函数,并考虑其平均值\begin{align*} A_N f (x)&=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*}我们证明了这些平均值的显著$ \ell ^{p}$ -改进,以及极大函数的稀疏边界。最简单的不等式是,对于集合$ F, G\subset [0,N]$有\begin{equation*} N ^{-1} \langle A_N \mathbf 1_{F} , \mathbf 1_{G} \rangle \ll \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigl( \operatorname {Log} \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigr) ^{t}, \end{equation*},其中$ t=2$,或者假设广义黎曼假设,$ t=1$。对极大函数$ \sup_N A_N \mathbf 1_{F}$证明了相应的稀疏界。$ t=1$的不平等非常明显。其证明依据是圆法和布尔甘的插值论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信