{"title":"Fabrication of nickel-titanium-iron shape memory alloys by powder metallurgy route and analyses of their physical and mechanical behaviour","authors":"J. Parida, S. Mishra, B. C. Marupalli, A. Behera","doi":"10.1080/00325899.2023.2235143","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this research work, the effect of Fe additions on the phase evolution, microstructure, chemical composition, transformation behaviour and properties of Ni(50−X)Ti50FeX shape memory alloys has been investigated. The elemental Ti, Ni and Fe mixed powders are compacted at 600 MPa, followed by sintering at 1100°C for 4hr in an Ar atmosphere. Phase analysis and microstructural studies confirmed the presence of the NiTi phase besides other Ni-rich and Ti-rich phases. The 8at.-% Fe sample shows higher relative density, lower porosity, higher hardness, higher elastic modulus and higher wear resistance owing to the presence of a higher amount of secondary intermetallic phases compared to other composition samples. Interestingly, the 4at.-% Fe sample has a higher percentage of NiTi (B19’) phase and shows a better shape memory effect and elastic recovery than other composition samples. FESEM morphology of worn surface explained various wear mechanisms with respect to shape memory behaviour.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2235143","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT In this research work, the effect of Fe additions on the phase evolution, microstructure, chemical composition, transformation behaviour and properties of Ni(50−X)Ti50FeX shape memory alloys has been investigated. The elemental Ti, Ni and Fe mixed powders are compacted at 600 MPa, followed by sintering at 1100°C for 4hr in an Ar atmosphere. Phase analysis and microstructural studies confirmed the presence of the NiTi phase besides other Ni-rich and Ti-rich phases. The 8at.-% Fe sample shows higher relative density, lower porosity, higher hardness, higher elastic modulus and higher wear resistance owing to the presence of a higher amount of secondary intermetallic phases compared to other composition samples. Interestingly, the 4at.-% Fe sample has a higher percentage of NiTi (B19’) phase and shows a better shape memory effect and elastic recovery than other composition samples. FESEM morphology of worn surface explained various wear mechanisms with respect to shape memory behaviour.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.