Boundedness of planar jump discontinuities for homogeneous hyperbolic systems

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
J. Rauch
{"title":"Boundedness of planar jump discontinuities for homogeneous hyperbolic systems","authors":"J. Rauch","doi":"10.1142/s0219891621500168","DOIUrl":null,"url":null,"abstract":"Suppose that [Formula: see text] is a homogeneous constant coefficient strongly hyperbolic partial differential operator on [Formula: see text] and that [Formula: see text] is a characteristic hyperplane. Suppose that in a conic neighborhood of the conormal variety of [Formula: see text], the characteristic variety of [Formula: see text] is the graph of a real analytic function [Formula: see text] with [Formula: see text] identically equal to zero or the maximal possible value [Formula: see text]. Suppose that the source function [Formula: see text] is compactly supported in [Formula: see text] and piecewise smooth with singularities only on [Formula: see text]. Then the solution of [Formula: see text] with [Formula: see text] for [Formula: see text] is uniformly bounded on [Formula: see text]. Typically when [Formula: see text] on the conormal variety, the sup norm of the jump in the gradient of [Formula: see text] across [Formula: see text] grows linearly with [Formula: see text].","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Suppose that [Formula: see text] is a homogeneous constant coefficient strongly hyperbolic partial differential operator on [Formula: see text] and that [Formula: see text] is a characteristic hyperplane. Suppose that in a conic neighborhood of the conormal variety of [Formula: see text], the characteristic variety of [Formula: see text] is the graph of a real analytic function [Formula: see text] with [Formula: see text] identically equal to zero or the maximal possible value [Formula: see text]. Suppose that the source function [Formula: see text] is compactly supported in [Formula: see text] and piecewise smooth with singularities only on [Formula: see text]. Then the solution of [Formula: see text] with [Formula: see text] for [Formula: see text] is uniformly bounded on [Formula: see text]. Typically when [Formula: see text] on the conormal variety, the sup norm of the jump in the gradient of [Formula: see text] across [Formula: see text] grows linearly with [Formula: see text].
齐次双曲型系统平面跳跃间断的有界性
假设[公式:见正文]是[公式:看正文]上的齐次常系数强双曲偏微分算子,[公式:见正文]是特征超平面。假设在[公式:见正文]的正态变化的圆锥邻域中,[公式:看正文]的特征变化是实解析函数[公式:见图正文]的图,其中[公式:看看正文]等于零或最大可能值[公式:看到正文]。假设源函数[Former:see-text]在[Former:see-text]中得到紧凑支持,并且仅在[FormName:see-text]中具有奇点的分段平滑。然后,[公式:参见文本]与[公式:见文本]的[公式:详见文本]的解在[公式:请见文本]上一致有界。通常,当在正态变化上的[Former:see-text]时,[Former:see-text]在[Former:see-text]上的梯度跳跃的sup-normal随着[Former:see-txt]线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信