{"title":"Crystal structure of toceranib, C22H25FN4O2","authors":"J. Kaduk, S. Gates-Rector, T. Blanton","doi":"10.1017/S0885715622000513","DOIUrl":null,"url":null,"abstract":"The crystal structure of toceranib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Toceranib crystallizes in space group P21/c (#14) with a = 10.6899(6), b = 24.5134(4), c = 7.8747(4) Å, β = 107.7737(13)°, V = 1965.04(3) Å3, and Z = 4. The crystal structure consists of stacks of approximately planar molecules, with N–H⋯O hydrogen bonds between the layers. The commercial reagent sample was a mixture of two or more phases with toceranib being the dominant phase. The difference between the Rietveld-refined and DFT-optimized structures is larger than usual. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"38 1","pages":"21 - 26"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/S0885715622000513","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The crystal structure of toceranib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Toceranib crystallizes in space group P21/c (#14) with a = 10.6899(6), b = 24.5134(4), c = 7.8747(4) Å, β = 107.7737(13)°, V = 1965.04(3) Å3, and Z = 4. The crystal structure consists of stacks of approximately planar molecules, with N–H⋯O hydrogen bonds between the layers. The commercial reagent sample was a mixture of two or more phases with toceranib being the dominant phase. The difference between the Rietveld-refined and DFT-optimized structures is larger than usual. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).