Computing Optimal Properties of Drugs Using Mathematical Models of Single Channel Dynamics

Q2 Mathematics
A. Tveito, M. Maleckar, G. Lines
{"title":"Computing Optimal Properties of Drugs Using Mathematical Models of Single Channel Dynamics","authors":"A. Tveito, M. Maleckar, G. Lines","doi":"10.1515/cmb-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract Single channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"6 1","pages":"41 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2018-0004","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Single channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.
用单通道动力学数学模型计算药物的最优性能
摘要单通道动力学可以使用随机微分方程建模,通道状态的动力学(如打开、关闭、未激活)可以使用马尔可夫模型表示。这种模型也可用于表示突变的影响以及用于减轻突变有害影响的药物的影响。基于马尔可夫模型和单通道的随机模型,可以导出确定性偏微分方程(PDE),给出马尔可夫模型状态的概率密度函数(PDF)。在这项研究中,我们分析了建模野生型(WT)通道、突变通道(MT)和已应用药物的突变通道(MTD)的PDE。我们的目的是证明,可以优化给定药物的参数,使MTD模型的解与WT的解非常接近:理论上,突变的效果显著降低。我们将介绍支撑这种方法的数学框架,并将其应用于几个例子。特别是,我们将证明,从理论上讲,使用该方法可以改善一些已知的现有药物的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信