V. Pohrebennyk, P. Koszelnik, A. Nester, T. Libus, G. Kalda, M. Kida, A. Pękala
{"title":"Ecological, Economic and Practical Aspects of Water Treatment in the Galvanic Industry","authors":"V. Pohrebennyk, P. Koszelnik, A. Nester, T. Libus, G. Kalda, M. Kida, A. Pękala","doi":"10.12912/27197050/143379","DOIUrl":null,"url":null,"abstract":"The galvanic industry and the production of printed circuit boards are a significant source of environmental pollution, they pose a threat comparable to the chemical industry. They pollute both the atmosphere, the biosphere and the hydrosphere. The paper presents an assessment of the negative impact on the environment, galvanic production and the resulting post-production waste. It was proposed to use the technology of regeneration of used treating solutions, in which the recovered metal can be reused as a secondary raw material for the production of copper products. The regenerated solution, on the other hand, can be used to treat integrated circuit boards. As part of the work, with the use of a microscope, the structural characteristics of the metal surface obtained as a result of the applied regeneration process were carried out. The indicator of the total exposure to substances present in the deposit formed during production was determined, both before (0.045) and after the introduction of the new technology (100). The economic analysis of the planned project based on the new technology showed that the implementation of the presented method of wastewater treatment allows for obtaining significant benefits, both financial and environmental. The analyses performed can be a valuable source of information on how to reduce the impact environment during the production of integrated circuit boards, as well as on the possibilities of obtaining less expensive materials in the form of secondary raw materials.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/143379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The galvanic industry and the production of printed circuit boards are a significant source of environmental pollution, they pose a threat comparable to the chemical industry. They pollute both the atmosphere, the biosphere and the hydrosphere. The paper presents an assessment of the negative impact on the environment, galvanic production and the resulting post-production waste. It was proposed to use the technology of regeneration of used treating solutions, in which the recovered metal can be reused as a secondary raw material for the production of copper products. The regenerated solution, on the other hand, can be used to treat integrated circuit boards. As part of the work, with the use of a microscope, the structural characteristics of the metal surface obtained as a result of the applied regeneration process were carried out. The indicator of the total exposure to substances present in the deposit formed during production was determined, both before (0.045) and after the introduction of the new technology (100). The economic analysis of the planned project based on the new technology showed that the implementation of the presented method of wastewater treatment allows for obtaining significant benefits, both financial and environmental. The analyses performed can be a valuable source of information on how to reduce the impact environment during the production of integrated circuit boards, as well as on the possibilities of obtaining less expensive materials in the form of secondary raw materials.