Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters

IF 3.5 1区 数学 Q1 MATHEMATICS
Dzmitry Dudko, M. Lyubich, N. Selinger
{"title":"Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters","authors":"Dzmitry Dudko, M. Lyubich, N. Selinger","doi":"10.1090/jams/942","DOIUrl":null,"url":null,"abstract":"In the 1980s Branner and Douady discovered a surgery relating various limbs of the Mandelbrot set. We put this surgery in the framework of \"Pacman Renormalization Theory\" that combines features of quadratic-like and Siegel renormalizations. We show that Siegel renormalization periodic points (constructed by McMullen in the 1990s) can be promoted to pacman renormalization periodic points. Then we prove that these periodic points are hyperbolic with one-dimensional unstable manifold. As a consequence, we obtain the scaling laws for the centers of satellite components of the Mandelbrot set near the corresponding Siegel parameters.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/942","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/942","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

In the 1980s Branner and Douady discovered a surgery relating various limbs of the Mandelbrot set. We put this surgery in the framework of "Pacman Renormalization Theory" that combines features of quadratic-like and Siegel renormalizations. We show that Siegel renormalization periodic points (constructed by McMullen in the 1990s) can be promoted to pacman renormalization periodic points. Then we prove that these periodic points are hyperbolic with one-dimensional unstable manifold. As a consequence, we obtain the scaling laws for the centers of satellite components of the Mandelbrot set near the corresponding Siegel parameters.
Siegel参数附近Mandelbrot集的Pacman重整化和自相似性
在20世纪80年代,Branner和Douady发现了一种与Mandelbrot集合的不同肢体相关的手术。我们把这个手术放在“吃豆人重整化理论”的框架中,它结合了二次化和西格尔重整化的特点。我们证明了Siegel重整化周期点(由McMullen在20世纪90年代构造)可以推广到pacman重整化周期点。然后证明了这些周期点是具有一维不稳定流形的双曲型。因此,我们得到了Mandelbrot集合的卫星分量中心在相应的Siegel参数附近的标度律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信