Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities

Q2 Agricultural and Biological Sciences
J. Sjöman, A. Hirons, N. Bassuk, H. Sjöman
{"title":"Plant and Wood Area Index of Solitary Trees for Urban Contexts in Nordic Cities","authors":"J. Sjöman, A. Hirons, N. Bassuk, H. Sjöman","doi":"10.48044/jauf.2021.022","DOIUrl":null,"url":null,"abstract":"Background: We present the plant area index (PAI) measurements taken for 63 deciduous broadleaved tree species and 1 deciduous conifer tree species suitable for urban areas in Nordic cities. The aim was to evaluate PAI and wood area index (WAI) of solitary-grown broadleaved tree species and cultivars of the same age in order to present a data resource of individual tree characteristics viewed in summer (PAI) and in winter (WAI). Methods: All trees were planted as individuals in 2001 at the Hørsholm Arboretum in Denmark. The field method included a Digital Plant Canopy Imager where each scan and contrast values were set to consistent values. Results: The results illustrate that solitary trees differ widely in their WAI and PAI and reflect the integrated effects of leaf material and the woody component of tree crowns. The indications also show highly significant (P < 0.001) differences between species and genotypes. The WAI had an overall mean of 0.91 (± 0.03), ranging from Tilia platyphyllos ‘Orebro’ with a WAI of 0.32 (± 0.04) to Carpinus betulus ‘Fastigiata’ with a WAI of 1.94 (± 0.09). The lowest mean PAI in the dataset was Fraxinus angustifolia ‘Raywood’ with a PAI of 1.93 (± 0.05), whereas Acer campestre ‘Kuglennar’ represents the cultivar with the largest PAI of 8.15 (± 0.14). Conclusions: Understanding how this variation in crown architectural structure changes over the year can be applied to climate responsive design and microclimate modeling where plant and wood area index of solitary-grown trees in urban contexts are of interest.","PeriodicalId":39043,"journal":{"name":"Arboriculture and Urban Forestry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arboriculture and Urban Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48044/jauf.2021.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Background: We present the plant area index (PAI) measurements taken for 63 deciduous broadleaved tree species and 1 deciduous conifer tree species suitable for urban areas in Nordic cities. The aim was to evaluate PAI and wood area index (WAI) of solitary-grown broadleaved tree species and cultivars of the same age in order to present a data resource of individual tree characteristics viewed in summer (PAI) and in winter (WAI). Methods: All trees were planted as individuals in 2001 at the Hørsholm Arboretum in Denmark. The field method included a Digital Plant Canopy Imager where each scan and contrast values were set to consistent values. Results: The results illustrate that solitary trees differ widely in their WAI and PAI and reflect the integrated effects of leaf material and the woody component of tree crowns. The indications also show highly significant (P < 0.001) differences between species and genotypes. The WAI had an overall mean of 0.91 (± 0.03), ranging from Tilia platyphyllos ‘Orebro’ with a WAI of 0.32 (± 0.04) to Carpinus betulus ‘Fastigiata’ with a WAI of 1.94 (± 0.09). The lowest mean PAI in the dataset was Fraxinus angustifolia ‘Raywood’ with a PAI of 1.93 (± 0.05), whereas Acer campestre ‘Kuglennar’ represents the cultivar with the largest PAI of 8.15 (± 0.14). Conclusions: Understanding how this variation in crown architectural structure changes over the year can be applied to climate responsive design and microclimate modeling where plant and wood area index of solitary-grown trees in urban contexts are of interest.
北欧城市背景下单生树木植物和木材面积指数
背景:我们介绍了适用于北欧城市地区的63种落叶阔叶树和1种落叶针叶树的植物面积指数(PAI)测量结果。目的是评估同龄单独生长的阔叶树种和栽培品种的PAI和木材面积指数,以提供夏季(PAI)和冬季(WAI)树木个体特征的数据资源。方法:所有树木于2001年在丹麦的Hørsholm植物园单独种植。现场方法包括数字植物冠层成像仪,其中每个扫描和对比度值都设置为一致值。结果:结果表明,孤立树的WAI和PAI差异很大,反映了叶材和树冠木质成分的综合作用。适应症还显示出物种和基因型之间的高度显著差异(P<0.001)。WAI的总体平均值为0.91(±0.03),从WAI为0.32(±0.04)的Tilia platyphyllos‘Orebro’到WAI为1.94(±0.09)的Carpinus betulus‘Fastigiata’。数据集中平均PAI最低的是Fraxinus angustifolia‘Raywood’,其PAI为1.93(±0.05),而Acer campestre‘Kuglennar’代表了PAI最大的品种,为8.15(±0.14)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arboriculture and Urban Forestry
Arboriculture and Urban Forestry Agricultural and Biological Sciences-Forestry
CiteScore
1.70
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信