Artificial intelligence with deep learning algorithms to model relationships between total tree height and diameter at breast height

IF 0.8 4区 农林科学 Q3 FORESTRY
İlker Ercanli
{"title":"Artificial intelligence with deep learning algorithms to model relationships between total tree height and diameter at breast height","authors":"İlker Ercanli","doi":"10.5424/fs/2020292-16393","DOIUrl":null,"url":null,"abstract":"Aim of Study: As an innovative prediction technique, Artificial Intelligence technique based on a Deep Learning Algorithm (DLA) with various numbers of neurons and hidden layer alternatives were trained and evaluated to predict the relationships between total tree height (TTH) and diameter at breast height (DBH) with nonlinear least squared (NLS) regression models and nonlinear mixed effect (NLME) regression models.Area of Study: The data of this study were measured from even-aged, pure Turkish Pine (Pinus brutia Ten.) stands in the Kestel Forests located in the Bursa region of northwestern Turkey.Material and Methods: 1132 pairs of TTH-DBH measurements from 132 sample plots were used for modeling relationships between TTH, DBH, and stand attributes such as dominant height (Ho) and diameter (Do).Main Results: The combination of 100 # neurons and 8 # hidden layer in DLA resulted in the best predictive total height prediction values with Average Absolute Error (0.4188), max. Average Absolute Error (3.7598), Root Mean Squared Error (0.6942), Root Mean Squared error % (5.2164), Akaike Information Criteria (-345.4465), Bayesian Information Criterion (-330.836), the average Bias (0.0288) and the average Bias % (0.2166), and fitting abilities with r (0.9842) and Fit Index (0.9684). Also, the results of equivalence tests showed that the DLA technique successfully predicted the TTH in the validation dataset.Research highlights: These superior fitting scores coupled with the validation results in TTH predictions suggested that deep learning network models should be considered an alternative to the traditional nonlinear regression techniques and should be given importance as an innovative prediction technique.Keywords: Prediction; artificial intelligence; deep learning algorithms; number of neurons; hidden layer alternatives.Abbreviations: TTH (total tree height), DBH (diameter at breast height), OLS (ordinary least squares), NLME (nonlinear mixed effect), AIT (Artificial Intelligence Techniques), ANN (Artificial Neural Network), DLA (Deep Learning Algorithm), GPU (Graphical Processing Units), NLS (nonlinear least squared), RMSE (root mean squared error), AIC (Akaike information criteria), BIC (Bayesian information criterion), FI (fit index), AAE (average absolute error), BLUP (best linear unbiased predictor), TOST (two one-sided test method). ","PeriodicalId":50434,"journal":{"name":"Forest Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Systems","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5424/fs/2020292-16393","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 6

Abstract

Aim of Study: As an innovative prediction technique, Artificial Intelligence technique based on a Deep Learning Algorithm (DLA) with various numbers of neurons and hidden layer alternatives were trained and evaluated to predict the relationships between total tree height (TTH) and diameter at breast height (DBH) with nonlinear least squared (NLS) regression models and nonlinear mixed effect (NLME) regression models.Area of Study: The data of this study were measured from even-aged, pure Turkish Pine (Pinus brutia Ten.) stands in the Kestel Forests located in the Bursa region of northwestern Turkey.Material and Methods: 1132 pairs of TTH-DBH measurements from 132 sample plots were used for modeling relationships between TTH, DBH, and stand attributes such as dominant height (Ho) and diameter (Do).Main Results: The combination of 100 # neurons and 8 # hidden layer in DLA resulted in the best predictive total height prediction values with Average Absolute Error (0.4188), max. Average Absolute Error (3.7598), Root Mean Squared Error (0.6942), Root Mean Squared error % (5.2164), Akaike Information Criteria (-345.4465), Bayesian Information Criterion (-330.836), the average Bias (0.0288) and the average Bias % (0.2166), and fitting abilities with r (0.9842) and Fit Index (0.9684). Also, the results of equivalence tests showed that the DLA technique successfully predicted the TTH in the validation dataset.Research highlights: These superior fitting scores coupled with the validation results in TTH predictions suggested that deep learning network models should be considered an alternative to the traditional nonlinear regression techniques and should be given importance as an innovative prediction technique.Keywords: Prediction; artificial intelligence; deep learning algorithms; number of neurons; hidden layer alternatives.Abbreviations: TTH (total tree height), DBH (diameter at breast height), OLS (ordinary least squares), NLME (nonlinear mixed effect), AIT (Artificial Intelligence Techniques), ANN (Artificial Neural Network), DLA (Deep Learning Algorithm), GPU (Graphical Processing Units), NLS (nonlinear least squared), RMSE (root mean squared error), AIC (Akaike information criteria), BIC (Bayesian information criterion), FI (fit index), AAE (average absolute error), BLUP (best linear unbiased predictor), TOST (two one-sided test method). 
人工智能与深度学习算法建模树的总高度和胸脯高度直径之间的关系
研究目的:作为一种创新的预测技术,利用非线性最小二乘(NLS)回归模型和非线性混合效应(NLME)回归模型,对基于不同神经元数量和隐层替代方案的深度学习算法(DLA)的人工智能技术进行了训练和评估,以预测树高(TTH)和胸径(DBH)之间的关系。研究领域:本研究的数据是从位于土耳其西北部布尔萨地区的Kestel森林中的均匀年龄的纯土耳其松(Pinus brutia Ten.)中测量的。材料与方法:利用来自132个样地的1132对TTH-DBH测量数据,对TTH、DBH与优势高度(Ho)和林分直径(Do)等林分属性之间的关系进行建模。主要结果:DLA中100 #神经元和8 #隐藏层组合的预测总高度预测值最佳,平均绝对误差(平均绝对误差)为0.4188;平均绝对误差(3.7598)、均方根误差(0.6942)、均方根误差%(5.2164)、赤井信息标准(-345.4465)、贝叶斯信息标准(- 3300.836)、平均偏倚(0.0288)和平均偏倚%(0.2166),以及r(0.9842)和拟合指数(0.9684)的拟合能力。等效性测试结果表明,DLA技术成功地预测了验证数据集中的TTH。研究重点:这些优越的拟合分数加上TTH预测的验证结果表明,深度学习网络模型应被视为传统非线性回归技术的替代方案,应作为一种创新的预测技术予以重视。关键词:预测;人工智能;深度学习算法;神经元数;隐藏层替代品。缩写:TTH(总树高)、DBH(胸径)、OLS(普通最小二乘)、NLME(非线性混合效应)、AIT(人工智能技术)、ANN(人工神经网络)、DLA(深度学习算法)、GPU(图形处理单元)、NLS(非线性最小二乘)、RMSE(均方根误差)、AIC(赤池信息准则)、BIC(贝叶斯信息准则)、FI(拟合指数)、AAE(平均绝对误差)、BLUP(最佳线性无偏预测器)、双单侧检验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forest Systems
Forest Systems FORESTRY-
CiteScore
1.40
自引率
14.30%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Systems is an international peer-reviewed journal. The main aim of Forest Systems is to integrate multidisciplinary research with forest management in complex systems with different social and ecological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信