Lidia Komondy, J. Huguet-Tapia, M. Ascunce, Ericka E Helmick, E. Goss, B. Bahder
{"title":"The Complete Mitochondrial Genome of the American Palm Cixiid, Haplaxius crudus (Hemiptera: Cixiidae)","authors":"Lidia Komondy, J. Huguet-Tapia, M. Ascunce, Ericka E Helmick, E. Goss, B. Bahder","doi":"10.21203/rs.3.rs-54062/v1","DOIUrl":null,"url":null,"abstract":"Haplaxius crudus Van Duzee is a pest of various economically important palms due to its ability to transmit lethal yellowing, a fatal phytoplasma infection. It is also the putative vector of lethal bronzing in Florida, another lethal phytoplasma disease causing significant economic losses. To date, no mitochondrial genomes for species in the family Cixiidae are sequenced. In this study, the complete mitochondrial genome of H. crudus was sequenced, assembled, and annotated from PacBio Sequel II long sequencing reads using the University of Florida’s HiPerGator. The mitogenome of H. crudus is 15,848 bp long and encodes 37 mitochondrial genes (including 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs) in addition to a putative noncoding internal control region. The nucleotide composition of H. crudus is asymmetric with a bias toward A/T (44.8 %A, 13.4 %C, 8.5 %G, and 33.3 %T). Protein-coding genes (PCGs) possess the standard invertebrate mitochondrial start codons with few exceptions while the gene content and order of the H. crudus mitogenome is highly similar to most completely sequenced insect mitochondrial genomes. Phylogenetic analysis based on the entire mitogenome shows H. crudus resolving closely to Delphacidae, the accepted sister taxon of Cixiidae. These data provide a useful resource for developing novel primer sets that could aid in either phylogenetic studies or population genetic studies. As more full mitogenomes become available in the future for other planthopper species, more robust phylogenies can be constructed, giving more accurate perspectives on the evolutionary relationships within this fascinating and economically important group of insects.","PeriodicalId":20890,"journal":{"name":"Psyche: A Journal of Entomology","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psyche: A Journal of Entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-54062/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Haplaxius crudus Van Duzee is a pest of various economically important palms due to its ability to transmit lethal yellowing, a fatal phytoplasma infection. It is also the putative vector of lethal bronzing in Florida, another lethal phytoplasma disease causing significant economic losses. To date, no mitochondrial genomes for species in the family Cixiidae are sequenced. In this study, the complete mitochondrial genome of H. crudus was sequenced, assembled, and annotated from PacBio Sequel II long sequencing reads using the University of Florida’s HiPerGator. The mitogenome of H. crudus is 15,848 bp long and encodes 37 mitochondrial genes (including 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs) in addition to a putative noncoding internal control region. The nucleotide composition of H. crudus is asymmetric with a bias toward A/T (44.8 %A, 13.4 %C, 8.5 %G, and 33.3 %T). Protein-coding genes (PCGs) possess the standard invertebrate mitochondrial start codons with few exceptions while the gene content and order of the H. crudus mitogenome is highly similar to most completely sequenced insect mitochondrial genomes. Phylogenetic analysis based on the entire mitogenome shows H. crudus resolving closely to Delphacidae, the accepted sister taxon of Cixiidae. These data provide a useful resource for developing novel primer sets that could aid in either phylogenetic studies or population genetic studies. As more full mitogenomes become available in the future for other planthopper species, more robust phylogenies can be constructed, giving more accurate perspectives on the evolutionary relationships within this fascinating and economically important group of insects.