Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics

IF 3.1 1区 数学 Q1 MATHEMATICS
Yanjin Wang, Zhouping Xin
{"title":"Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics","authors":"Yanjin Wang,&nbsp;Zhouping Xin","doi":"10.1002/cpa.22148","DOIUrl":null,"url":null,"abstract":"<p>We establish the local existence and uniqueness of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics (MHD) in Sobolev spaces, which are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for hyperbolic systems of conservation laws. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversely, which lead to a two-phase free boundary problem where the pressure, velocity and magnetic field are continuous across the interface whereas the entropy and density may have jumps. To overcome the difficulties of possible nonlinear Rayleigh–Taylor instability and loss of derivatives, here we use crucially the Lagrangian formulation and Cauchy's celebrated integral (1815) for the magnetic field. These motivate us to define two special good unknowns; one enables us to capture the boundary regularizing effect of the transversal magnetic field on the flow map, and the other one allows us to get around the troublesome boundary integrals due to the transversality of the magnetic field. In particular, our result removes the additional assumption of the Rayleigh–Taylor sign condition required by Morando, Trakhinin and Trebeschi (<i>J. Differ. Equ</i>. <b>258</b> (2015), no. 7, 2531–2571; <i>Arch. Ration. Mech. Anal</i>. <b>228</b> (2018), no. 2, 697–742) and holds for both 2D and 3D and hence gives a complete answer to the two open questions raised therein. Moreover, there is <i>no loss of derivatives</i> in our well-posedness theory. The solution is constructed as <i>the inviscid limit</i> of solutions to some suitably-chosen nonlinear approximate problems for the two-phase compressible viscous non-resistive MHD.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"583-629"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22148","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We establish the local existence and uniqueness of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics (MHD) in Sobolev spaces, which are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for hyperbolic systems of conservation laws. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversely, which lead to a two-phase free boundary problem where the pressure, velocity and magnetic field are continuous across the interface whereas the entropy and density may have jumps. To overcome the difficulties of possible nonlinear Rayleigh–Taylor instability and loss of derivatives, here we use crucially the Lagrangian formulation and Cauchy's celebrated integral (1815) for the magnetic field. These motivate us to define two special good unknowns; one enables us to capture the boundary regularizing effect of the transversal magnetic field on the flow map, and the other one allows us to get around the troublesome boundary integrals due to the transversality of the magnetic field. In particular, our result removes the additional assumption of the Rayleigh–Taylor sign condition required by Morando, Trakhinin and Trebeschi (J. Differ. Equ. 258 (2015), no. 7, 2531–2571; Arch. Ration. Mech. Anal. 228 (2018), no. 2, 697–742) and holds for both 2D and 3D and hence gives a complete answer to the two open questions raised therein. Moreover, there is no loss of derivatives in our well-posedness theory. The solution is constructed as the inviscid limit of solutions to some suitably-chosen nonlinear approximate problems for the two-phase compressible viscous non-resistive MHD.

理想可压缩磁流体力学的多维接触间断性的存在性
我们建立了Sobolev空间中理想可压缩磁流体力学(MHD)的多维接触不连续的局部存在性和唯一性,这是天体物理等离子体的最典型界面波和双曲守恒系统的典型基本波。这种波是典型的不连续面,当磁场横向交叉时,在不连续面上没有流动,这导致了一个两相自由边界问题,其中压力、速度和磁场在界面上是连续的,而熵和密度可能有跳跃。为了克服可能的非线性瑞利-泰勒不稳定性和导数损失的困难,这里我们使用拉格朗日公式和柯西著名的积分(1815)来表示磁场。这促使我们去定义两个特殊的好未知数;一个使我们能够捕获横向磁场在流图上的边界正则化效应,另一个使我们能够绕过由于磁场的横向性而引起的麻烦的边界积分。特别是,我们的结果去除了Morando, Trakhinin和Trebeschi (J. Differ)所要求的Rayleigh-Taylor符号条件的额外假设。方程258 (2015),no。7, 2531 - 2571;拱门。配给。动力机械。228 (2018), no。2,697 - 742),并适用于2D和3D,因此对其中提出的两个开放性问题给出了完整的答案。此外,在我们的适定性理论中没有导数的损失。该解被构造为两相可压缩粘性非电阻MHD的一些适当选择的非线性近似问题解的无粘极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信