{"title":"Hypercooling limit and physical properties of liquid MoNbReTaW refractory high-entropy alloy","authors":"L. Hu, M. Lin, B. Wei","doi":"10.1080/09500839.2021.1933642","DOIUrl":null,"url":null,"abstract":"ABSTRACT The thermophysical properties of refractory MoNbReTaW high-entropy alloy in both supercooled liquid and high-temperature solid states were explored by an electrostatic levitation technique. The maximum supercooling attains 504 K, and the hypercooling limit is derived as 571 K. The liquid density at liquidus temperature is measured to be 13.3 g cm−3, which increases linearly with decreasing temperature at a slope of 6.83 × 10−4 g cm−3 K−1. The liquid alloy exhibits 5.3% relative volume shrinkage during crystallization. The thermal expansion coefficient of liquid and solid alloy at liquidus temperature are determined as 5.0 × 10−5 K−1 and 3.6 ×10−5 K−1, respectively. The liquid specific heat at liquidus temperature is found to be 38.2 J mol−1 K−1, and basically displays a linear decreasing tendency with temperature. According to the calculated enthalpy of fusion 24.7 kJ mol−1 and measured specific heats, the temperature-dependent entropy and Gibbs free energy difference between supercooled liquid and crystalline solid are obtained.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"312 - 319"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1933642","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1933642","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT The thermophysical properties of refractory MoNbReTaW high-entropy alloy in both supercooled liquid and high-temperature solid states were explored by an electrostatic levitation technique. The maximum supercooling attains 504 K, and the hypercooling limit is derived as 571 K. The liquid density at liquidus temperature is measured to be 13.3 g cm−3, which increases linearly with decreasing temperature at a slope of 6.83 × 10−4 g cm−3 K−1. The liquid alloy exhibits 5.3% relative volume shrinkage during crystallization. The thermal expansion coefficient of liquid and solid alloy at liquidus temperature are determined as 5.0 × 10−5 K−1 and 3.6 ×10−5 K−1, respectively. The liquid specific heat at liquidus temperature is found to be 38.2 J mol−1 K−1, and basically displays a linear decreasing tendency with temperature. According to the calculated enthalpy of fusion 24.7 kJ mol−1 and measured specific heats, the temperature-dependent entropy and Gibbs free energy difference between supercooled liquid and crystalline solid are obtained.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.