{"title":"Transitive distance-regular graphs from linear groups $L(3,q)$, $q = 2,3,4,5$","authors":"Andrea Švob","doi":"10.22108/TOC.2020.116255.1630","DOIUrl":null,"url":null,"abstract":"In this paper we classify distance-regular graphs, including strongly regular graphs, admitting a transitive action of the linear groups $L(3,2)$, $L(3,3)$, $L(3,4)$ and $L(3,5)$ for which the rank of the permutation representation is at most 15. We give details about constructed graphs. In addition, we construct self-orthogonal codes from distance-regular graphs obtained in this paper.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"49-60"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.116255.1630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we classify distance-regular graphs, including strongly regular graphs, admitting a transitive action of the linear groups $L(3,2)$, $L(3,3)$, $L(3,4)$ and $L(3,5)$ for which the rank of the permutation representation is at most 15. We give details about constructed graphs. In addition, we construct self-orthogonal codes from distance-regular graphs obtained in this paper.