On the Moore-Gibson-Thompson equation with memory with nonconvex kernels

IF 1.2 2区 数学 Q1 MATHEMATICS
M. Conti, L. Liverani, V. Pata
{"title":"On the Moore-Gibson-Thompson equation with memory with nonconvex kernels","authors":"M. Conti, L. Liverani, V. Pata","doi":"10.1512/iumj.2023.72.9330","DOIUrl":null,"url":null,"abstract":"We consider the MGT equation with memory $$\\partial_{ttt} u + \\alpha \\partial_{tt} u - \\beta \\Delta \\partial_{t} u - \\gamma\\Delta u + \\int_{0}^{t}g(s) \\Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel $g$, usually adopted in the literature. In the subcritical case $\\alpha\\beta>\\gamma$, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving $g$ and its derivative $g'$, namely, $$g'+\\delta g\\leq 0,\\quad\\delta>0,$$ but only asking that $g$ vanishes exponentially fast.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9330","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the MGT equation with memory $$\partial_{ttt} u + \alpha \partial_{tt} u - \beta \Delta \partial_{t} u - \gamma\Delta u + \int_{0}^{t}g(s) \Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel $g$, usually adopted in the literature. In the subcritical case $\alpha\beta>\gamma$, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving $g$ and its derivative $g'$, namely, $$g'+\delta g\leq 0,\quad\delta>0,$$ but only asking that $g$ vanishes exponentially fast.
关于具有非凸核记忆的Moore-Gibson-Thompson方程
我们考虑有内存的MGT方程$$\partial_{ttt} u + \alpha \partial_{tt} u - \beta \Delta \partial_{t} u - \gamma\Delta u + \int_{0}^{t}g(s) \Delta u(t-s) ds = 0.$$我们证明了一个存在唯一性结果,消除了文献中通常采用的卷积核的凸性假设$g$。在次临界情况$\alpha\beta>\gamma$中,我们建立了能量的指数衰减,而不依赖于涉及$g$及其导数$g'$的经典微分不等式,即$$g'+\delta g\leq 0,\quad\delta>0,$$,但只要求$g$以指数速度消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信