On the torsion in the center conjecture

Q3 Mathematics
V. Kapovitch, A. Petrunin, Wilderich Tuschmann
{"title":"On the torsion in the center conjecture","authors":"V. Kapovitch, A. Petrunin, Wilderich Tuschmann","doi":"10.3934/era.2018.25.004","DOIUrl":null,"url":null,"abstract":"We present a condition for towers of fiber bundles which implies that the fundamental group of the total space has a nilpotent subgroup of finite index whose torsion is contained in its center. Moreover, the index of the subgroup can be bounded in terms of the fibers of the tower. Our result is motivated by the conjecture that every almost nonnegatively curved closed \\begin{document}$ m $\\end{document} -dimensional manifold \\begin{document}$ M $\\end{document} admits a finite cover \\begin{document}$ \\tilde M $\\end{document} for which the number of leafs is bounded in terms of \\begin{document}$ m $\\end{document} such that the torsion of the fundamental group \\begin{document}$ π_1 \\tilde M $\\end{document} lies in its center.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"25 1","pages":"27-35"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2018.25.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We present a condition for towers of fiber bundles which implies that the fundamental group of the total space has a nilpotent subgroup of finite index whose torsion is contained in its center. Moreover, the index of the subgroup can be bounded in terms of the fibers of the tower. Our result is motivated by the conjecture that every almost nonnegatively curved closed \begin{document}$ m $\end{document} -dimensional manifold \begin{document}$ M $\end{document} admits a finite cover \begin{document}$ \tilde M $\end{document} for which the number of leafs is bounded in terms of \begin{document}$ m $\end{document} such that the torsion of the fundamental group \begin{document}$ π_1 \tilde M $\end{document} lies in its center.
关于中心扭转的猜想
我们给出了纤维束塔的一个条件,这意味着整个空间的基群具有一个有限指数幂零子群,其扭转包含在其中心。此外,子群的指数可以根据塔的纤维来确定。我们的结果受到这样一个猜想的启发,即每一个几乎非负弯曲的闭begin{document}$m$\end{document}-维流形begin{document}$m$\end}都允许一个有限的覆盖begin{document}$\tilde m$\eend{document},对于该覆盖,叶的数量根据begin{文档}$m$\end{文档}是有界的,使得基群begin{document}的扭转$π_1\tilde M$\end{document}位于其中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信