In vitro regeneration of Haloxylon ammodendron

Q3 Medicine
Ping Wang, Lingjuan Man, Li Ma, Jiaxin Qi, Yanping Ren, Z. Yao, Bo Wang, Cong Cheng, Hua Zhang
{"title":"In vitro regeneration of Haloxylon ammodendron","authors":"Ping Wang, Lingjuan Man, Li Ma, Jiaxin Qi, Yanping Ren, Z. Yao, Bo Wang, Cong Cheng, Hua Zhang","doi":"10.55779/nsb15211585","DOIUrl":null,"url":null,"abstract":"Haloxylon ammodendron (C.A.Mey) Bunge is one of the important species of arid desert vegetation in China, and it is also an ideal material for studying plant stress resistance, which plays an extremely important role in protecting desert ecosystems and preventing land desertification. However, there are relatively few studies on the regeneration of the fusiform, and the genetic transformation system has not been successfully reported, which restricts the in-depth study of the molecular mechanism of shuttle propagation and stress resistance. In the present study, the seeds, hypocotyls, cotyledons, cotyledon nodes, terminal buds and fixed buds were used as explants, and a set of tissue culture and plant regeneration system was established by inducing adventitious buds, adventitious bud rooting and transplanting. The results showed that amongst different H. ammodendron explants, i.e., seeds, hypocotyls, cotyledons and cotyledon nodes, the last induced budding effect was better. The optimal medium for inducing clandine buds by cotyledon segment differentiation is 0.5 mg·L-1 NAA+0.5 mg·L-1 6-BA induced budding rate was high, reaching 61.90%, rooting medium was 1/2 MS+1 mg·L-1 NAA +1 mg·L-1 IBA + 1 mg·L-1 IAA with a rooting rate of 50%. The results of this study will provide a theoretical basis for the genetic transformation of H. ammodendron.","PeriodicalId":19353,"journal":{"name":"Notulae Scientia Biologicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Scientia Biologicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55779/nsb15211585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Haloxylon ammodendron (C.A.Mey) Bunge is one of the important species of arid desert vegetation in China, and it is also an ideal material for studying plant stress resistance, which plays an extremely important role in protecting desert ecosystems and preventing land desertification. However, there are relatively few studies on the regeneration of the fusiform, and the genetic transformation system has not been successfully reported, which restricts the in-depth study of the molecular mechanism of shuttle propagation and stress resistance. In the present study, the seeds, hypocotyls, cotyledons, cotyledon nodes, terminal buds and fixed buds were used as explants, and a set of tissue culture and plant regeneration system was established by inducing adventitious buds, adventitious bud rooting and transplanting. The results showed that amongst different H. ammodendron explants, i.e., seeds, hypocotyls, cotyledons and cotyledon nodes, the last induced budding effect was better. The optimal medium for inducing clandine buds by cotyledon segment differentiation is 0.5 mg·L-1 NAA+0.5 mg·L-1 6-BA induced budding rate was high, reaching 61.90%, rooting medium was 1/2 MS+1 mg·L-1 NAA +1 mg·L-1 IBA + 1 mg·L-1 IAA with a rooting rate of 50%. The results of this study will provide a theoretical basis for the genetic transformation of H. ammodendron.
梭梭的离体再生
梭梭(Haloxylon ammodendron, C.A.Mey) Bunge)是中国干旱荒漠植被的重要物种之一,也是研究植物抗逆性的理想材料,在保护荒漠生态系统、防止土地沙漠化等方面具有极其重要的作用。但目前对梭状体再生的研究相对较少,遗传转化体系也未见成功报道,制约了梭状体繁殖和抗逆性分子机制的深入研究。本研究以种子、下胚轴、子叶、子叶节、顶芽和固定芽为外植体,通过诱导不定芽、不定芽生根和移栽,建立了一套组织培养和植株再生体系。结果表明,梭梭种子、下胚轴、子叶和子叶节不同外植体诱导出芽效果较好;子叶节段分化诱导暗芽的最佳培养基为0.5 mg·L-1 NAA+0.5 mg·L-1 6-BA,诱导出芽率高,达61.90%,生根培养基为1/2 MS+1 mg·L-1 NAA+ 1 mg·L-1 IBA +1 mg·L-1 IAA,生根率为50%。本研究结果将为梭梭的遗传转化提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Notulae Scientia Biologicae
Notulae Scientia Biologicae Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
63
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信