Sequential minimum optimization algorithm with small sample size estimators

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
W. Roga, T. Ono, M. Takeoka
{"title":"Sequential minimum optimization algorithm with small sample size estimators","authors":"W. Roga, T. Ono, M. Takeoka","doi":"10.1116/5.0148369","DOIUrl":null,"url":null,"abstract":"Sequential minimum optimization is a machine learning global search training algorithm. It is applicable when the functional dependence of the cost function on a tunable parameter given the other parameters can be cheaply determined. This assumption is satisfied by quantum circuits built of known gates. We apply it to photonic circuits where the additional challenge appears: low frequency of coincidence events lowers the speed of the algorithm. We propose to modify the algorithm such that small sample size estimators are enough to successfully run the machine learning task. We demonstrate the effectiveness of the modified algorithm applying it to a photonic classifier with data reuploading.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0148369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Sequential minimum optimization is a machine learning global search training algorithm. It is applicable when the functional dependence of the cost function on a tunable parameter given the other parameters can be cheaply determined. This assumption is satisfied by quantum circuits built of known gates. We apply it to photonic circuits where the additional challenge appears: low frequency of coincidence events lowers the speed of the algorithm. We propose to modify the algorithm such that small sample size estimators are enough to successfully run the machine learning task. We demonstrate the effectiveness of the modified algorithm applying it to a photonic classifier with data reuploading.
小样本量估计的序贯最小优化算法
序贯最小优化是一种机器学习全局搜索训练算法。它适用于在给定其他参数的情况下,成本函数对可调参数的函数依赖可以便宜地确定的情况。由已知门构成的量子电路满足了这一假设。我们将其应用于光子电路,其中出现了额外的挑战:低频率的巧合事件降低了算法的速度。我们建议修改算法,使小样本量估计器足以成功运行机器学习任务。我们将改进后的算法应用于具有数据重复加载的光子分类器中,证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信