A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution

IF 0.1 Q4 STATISTICS & PROBABILITY
Jiju Gillariose, Lishamol Tomy, Farrukh Jamal, C. Chesneau
{"title":"A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution","authors":"Jiju Gillariose, Lishamol Tomy, Farrukh Jamal, C. Chesneau","doi":"10.52547/jirss.20.2.129","DOIUrl":null,"url":null,"abstract":". Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some important distributions as special cases. Some properties of the new distribution are derived. The model parameters are estimated by the maximum likelihood method, with validation through a complete simulation study. The usefulness of the new model is illustrated via count-type real data sets. MSC:","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.2.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

. Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some important distributions as special cases. Some properties of the new distribution are derived. The model parameters are estimated by the maximum likelihood method, with validation through a complete simulation study. The usefulness of the new model is illustrated via count-type real data sets. MSC:
一个离散的Kumaraswamy Marshall-Olkin指数分布
. 寻找新的分布族已经成为统计研究中的一个流行工具。在本文中,我们引入了一种新的基于Marshall-Olkin方法的柔性四参数离散模型,即离散Kumaraswamy Marshall-Olkin指数分布。所提出的分布可以看作是几何分布的另一种推广,并包含了一些重要的分布作为特殊情况。给出了新分布的一些性质。采用最大似然法估计模型参数,并通过完整的仿真研究进行了验证。通过计数型实际数据集说明了新模型的有效性。硕士:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信