Beatriz Wang, Emanuel Brenag, R. Amorim, V. Rispoli, S. Ulhoa
{"title":"Exact Noncommutative Two-Dimensional Hydrogen Atom","authors":"Beatriz Wang, Emanuel Brenag, R. Amorim, V. Rispoli, S. Ulhoa","doi":"10.1155/2021/5562179","DOIUrl":null,"url":null,"abstract":"In this work, we present an exact analysis of the two-dimensional noncommutative hydrogen atom. In this study, the Levi-Civita transformation was used to perform the solution of the noncommutative Schrodinger equation for Coulomb potential. As an important result, we determine the energy levels for the considered system. Using the result obtained and experimental data, a bound on the noncommutativity parameter was obtained.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2021 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5562179","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present an exact analysis of the two-dimensional noncommutative hydrogen atom. In this study, the Levi-Civita transformation was used to perform the solution of the noncommutative Schrodinger equation for Coulomb potential. As an important result, we determine the energy levels for the considered system. Using the result obtained and experimental data, a bound on the noncommutativity parameter was obtained.
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.