{"title":"Buckling of Cracked Euler–Bernoulli Columns Embedded in a Winkler Elastic Medium","authors":"J. Loya, C. Santiuste, J. Aranda-Ruiz, R. Zaera","doi":"10.3390/mca28040087","DOIUrl":null,"url":null,"abstract":"This work analyses the buckling behaviour of cracked Euler–Bernoulli columns immersed in a Winkler elastic medium, obtaining their buckling loads. For this purpose, the beam is modelled as two segments connected in the cracked section by a mass-less rotational spring. Its rotation is proportional to the bending moment transmitted through the cracked section, considering the discontinuity of the rotation due to bending. The differential equations for the buckling behaviour are solved by applying the corresponding boundary conditions, as well as the compatibility and jump conditions of the cracked section. The proposed methodology allows calculating the buckling load as a function of the type of support, the parameter defining the elastic soil, the crack position and the initial length of the crack. The results obtained are compared with those published by other authors in works that deal with the problem in a partial way, showing the interaction and importance of the parameters considered in the buckling loads of the system.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28040087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work analyses the buckling behaviour of cracked Euler–Bernoulli columns immersed in a Winkler elastic medium, obtaining their buckling loads. For this purpose, the beam is modelled as two segments connected in the cracked section by a mass-less rotational spring. Its rotation is proportional to the bending moment transmitted through the cracked section, considering the discontinuity of the rotation due to bending. The differential equations for the buckling behaviour are solved by applying the corresponding boundary conditions, as well as the compatibility and jump conditions of the cracked section. The proposed methodology allows calculating the buckling load as a function of the type of support, the parameter defining the elastic soil, the crack position and the initial length of the crack. The results obtained are compared with those published by other authors in works that deal with the problem in a partial way, showing the interaction and importance of the parameters considered in the buckling loads of the system.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.