Fused-Grain Feature Learning for Unsupervised Person Re-identification

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Hua Han, Li Huang, Yujin Zhang, Jiamin Tang
{"title":"Fused-Grain Feature Learning for Unsupervised Person Re-identification","authors":"Hua Han, Li Huang, Yujin Zhang, Jiamin Tang","doi":"10.24846/v31i2y202204","DOIUrl":null,"url":null,"abstract":": Most supervised learning methods are currently used to solve the task of person re-identification (Re-ID) and yield excellent results. But these methods usually need manual annotation of training data. Especially for large data sets, they need too high cost of manual annotation and the data are difficult to obtain for fully pairwise labeling. So unsupervised learning becomes a necessarily trend for person Re-ID. This paper is trying to solve the problem by unsupervised learning method. Moreover, global features focus on spatial integrity of person features, and local ones help to highlight discriminative features of different patches. Therefore, fused-grained unsupervised (FGU) learning framework of global and local branches’ feature learning is proposed to solve Re-ID task. Specifically, for the local branch, one extracts patches from a feature map which learned on a PatchNet network of images, and learns their fine-grained features to pull close the similar patches and push away the dissimilar ones. For the global branch, one maximizes the diversity between classes by repelled loss and similarity within classes through attracted loss, then similarity and diversity in the unlabeled data sets are used as information for unsupervised cluster merging and learning their coarse-grained features. The two branches are used to jointly achieve the effect of increasing inter-class differences and intra-class similarity. A large number of experiments verify the superiority of the proposed method for unsupervised person re-identification.","PeriodicalId":49466,"journal":{"name":"Studies in Informatics and Control","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Informatics and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24846/v31i2y202204","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

: Most supervised learning methods are currently used to solve the task of person re-identification (Re-ID) and yield excellent results. But these methods usually need manual annotation of training data. Especially for large data sets, they need too high cost of manual annotation and the data are difficult to obtain for fully pairwise labeling. So unsupervised learning becomes a necessarily trend for person Re-ID. This paper is trying to solve the problem by unsupervised learning method. Moreover, global features focus on spatial integrity of person features, and local ones help to highlight discriminative features of different patches. Therefore, fused-grained unsupervised (FGU) learning framework of global and local branches’ feature learning is proposed to solve Re-ID task. Specifically, for the local branch, one extracts patches from a feature map which learned on a PatchNet network of images, and learns their fine-grained features to pull close the similar patches and push away the dissimilar ones. For the global branch, one maximizes the diversity between classes by repelled loss and similarity within classes through attracted loss, then similarity and diversity in the unlabeled data sets are used as information for unsupervised cluster merging and learning their coarse-grained features. The two branches are used to jointly achieve the effect of increasing inter-class differences and intra-class similarity. A large number of experiments verify the superiority of the proposed method for unsupervised person re-identification.
用于无监督人员再识别的融合粒度特征学习
:目前大多数监督学习方法都用于解决人员重新识别(re-ID)任务,并取得了良好的效果。但这些方法通常需要对训练数据进行手动注释。特别是对于大型数据集,它们需要太高的手动注释成本,并且很难获得完全成对标记的数据。因此,无监督学习成为Re-ID的必然趋势。本文试图通过无监督学习的方法来解决这个问题。此外,全局特征侧重于人特征的空间完整性,局部特征有助于突出不同斑块的判别特征。因此,提出了全局和局部分支特征学习的融合粒度无监督(FGU)学习框架来解决Re-ID任务。具体来说,对于局部分支,从在PatchNet图像网络上学习的特征图中提取补丁,并学习它们的细粒度特征,以关闭相似的补丁并推开不相似的补丁。对于全局分支,通过排斥损失最大化类之间的多样性,通过吸引损失最大化类内的相似性,然后将未标记数据集中的相似性和多样性用作无监督聚类合并和学习其粗粒度特征的信息。这两个分支用于共同实现增加类间差异和类内相似性的效果。大量实验验证了该方法在无监督人员再识别中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Informatics and Control
Studies in Informatics and Control AUTOMATION & CONTROL SYSTEMS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
2.70
自引率
25.00%
发文量
34
审稿时长
>12 weeks
期刊介绍: Studies in Informatics and Control journal provides important perspectives on topics relevant to Information Technology, with an emphasis on useful applications in the most important areas of IT. This journal is aimed at advanced practitioners and researchers in the field of IT and welcomes original contributions from scholars and professionals worldwide. SIC is published both in print and online by the National Institute for R&D in Informatics, ICI Bucharest. Abstracts, full text and graphics of all articles in the online version of SIC are identical to the print version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信