{"title":"Sums and products of periodic functions","authors":"R. Deville","doi":"10.2478/mjpaa-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. The purpose of this note is to prove this result and also to study the possibility of decomposing more general polynomials into sum of periodic functions.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"204 - 208"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. The purpose of this note is to prove this result and also to study the possibility of decomposing more general polynomials into sum of periodic functions.