Gurubasavaraju Tharehalli mata, M. Muralidhar Singh
{"title":"Magnetohydrodynamics analysis of magnetorheological fluid damper","authors":"Gurubasavaraju Tharehalli mata, M. Muralidhar Singh","doi":"10.15282/jmes.17.2.2023.4.0748","DOIUrl":null,"url":null,"abstract":"A key feature of magnetorheological fluid is its variability of rheological properties in which upon exposing this fluid, the viscosity of the fluid changes accordingly. Hence this nature can be implemented in various engineering applications. To understand its influence in a magnetorheological (MR) damper, it is essential to study the flow behaviour using computational and numerical methods. The main objective of this work is to estimate the influence of the external magnetic field on the fluid flow velocity inside the damper using magnetohydrodynamic analysis. Finite element analysis, magnetostatic analysis, and magnetohydrodynamic (MHD) analysis have been carried out to investigate the change in the shape of the velocity profile across the flow gap of the monotube MR damper under the various magnitude of magnetic force using the MHD module of ANSYS fluent software. The simulation is conducted by considering laminar, steady-state, and incompressible fluid flow. In finite element analysis, the magnitude of magnetic flux density (MFD) ‘B’ was evaluated at various direct currents. Later, obtained MFD has been applied perpendicular direction to the flow of MR fluid. The effective length of the fluid exposed to the MFD is taken as 2 mm to 28 mm in an overall flow length of 30 mm. The extracted results have shown that the fluid flow velocity reduces with an increase in the magnetic flux density. It has been observed that 10.42 % reduction in velocity upon increasing the magnetic flux density from 0.25 T to 1 T at 75 kPa pressure. The reason for a reduction in velocity is because of variation in the rheological properties of the fluid under the magnetic field, which is very much essential to produce a good damping effect in the MR damper.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.4.0748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A key feature of magnetorheological fluid is its variability of rheological properties in which upon exposing this fluid, the viscosity of the fluid changes accordingly. Hence this nature can be implemented in various engineering applications. To understand its influence in a magnetorheological (MR) damper, it is essential to study the flow behaviour using computational and numerical methods. The main objective of this work is to estimate the influence of the external magnetic field on the fluid flow velocity inside the damper using magnetohydrodynamic analysis. Finite element analysis, magnetostatic analysis, and magnetohydrodynamic (MHD) analysis have been carried out to investigate the change in the shape of the velocity profile across the flow gap of the monotube MR damper under the various magnitude of magnetic force using the MHD module of ANSYS fluent software. The simulation is conducted by considering laminar, steady-state, and incompressible fluid flow. In finite element analysis, the magnitude of magnetic flux density (MFD) ‘B’ was evaluated at various direct currents. Later, obtained MFD has been applied perpendicular direction to the flow of MR fluid. The effective length of the fluid exposed to the MFD is taken as 2 mm to 28 mm in an overall flow length of 30 mm. The extracted results have shown that the fluid flow velocity reduces with an increase in the magnetic flux density. It has been observed that 10.42 % reduction in velocity upon increasing the magnetic flux density from 0.25 T to 1 T at 75 kPa pressure. The reason for a reduction in velocity is because of variation in the rheological properties of the fluid under the magnetic field, which is very much essential to produce a good damping effect in the MR damper.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.