{"title":"Invariants of algebraic varieties over imperfect fields","authors":"Hiromu Tanaka","doi":"10.2748/tmj.20200611","DOIUrl":null,"url":null,"abstract":"We introduce four invariants of algebraic varieties over imperfect fields, each of which measures either geometric non-normality or geometric non-reducedness. The first objective of this article is to establish fundamental properties of these invariants. We then apply our results to curves over imperfect fields. In particular, we establish a genus change formula and prove the boundedness of non-smooth regular curves of genus one. We also compute our invariants for some explicit examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20200611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We introduce four invariants of algebraic varieties over imperfect fields, each of which measures either geometric non-normality or geometric non-reducedness. The first objective of this article is to establish fundamental properties of these invariants. We then apply our results to curves over imperfect fields. In particular, we establish a genus change formula and prove the boundedness of non-smooth regular curves of genus one. We also compute our invariants for some explicit examples.