The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points

Q3 Mathematics
B. Ráth, D. V. Krishna, K. S. Kumar, G. K. S. Viswanadh
{"title":"The sharp bound of the third Hankel determinants for inverse of starlike functions with respect to symmetric points","authors":"B. Ráth, D. V. Krishna, K. S. Kumar, G. K. S. Viswanadh","doi":"10.30970/ms.58.1.45-50","DOIUrl":null,"url":null,"abstract":"We study the sharp bound for the third Hankel determinant for the inverse function $f$, when it belongs to of the class of starlike functions with respect to symmetric points.Let $\\mathcal{S}^{\\ast}_{s}$ be the class of starlike functions with respect to symmetric points. In the article proves the following statements (Theorem): If $f\\in \\mathcal{S}^{\\ast}_{s}$ then\\begin{equation*}\\big|H_{3,1}(f^{-1})\\big|\\leq1,\\end{equation*}and the result is sharp for $f(z)=z/(1-z^2).$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.45-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

We study the sharp bound for the third Hankel determinant for the inverse function $f$, when it belongs to of the class of starlike functions with respect to symmetric points.Let $\mathcal{S}^{\ast}_{s}$ be the class of starlike functions with respect to symmetric points. In the article proves the following statements (Theorem): If $f\in \mathcal{S}^{\ast}_{s}$ then\begin{equation*}\big|H_{3,1}(f^{-1})\big|\leq1,\end{equation*}and the result is sharp for $f(z)=z/(1-z^2).$
关于对称点的星形函数逆的第三汉克尔行列式的锐界
当反函数$f$属于关于对称点的星形函数的一类时,我们研究了它的第三个Hankel行列式的尖锐界。设$\mathcal{S}^{\ast}_{s}$为关于对称点的一类星形函数。在本文中证明了以下命题(定理):如果$f\in \mathcal{S}^{\ast}_{s}$则\begin{equation*}\big|H_{3,1}(f^{-1})\big|\leq1,\end{equation*},结果是尖锐的 $f(z)=z/(1-z^2).$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信