Benjamin Lu, E. Ben-Michael, A. Feller, Luke W. Miratrix
{"title":"Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation","authors":"Benjamin Lu, E. Ben-Michael, A. Feller, Luke W. Miratrix","doi":"10.3102/10769986231155427","DOIUrl":null,"url":null,"abstract":"In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture “compositional” differences in the distributions of unit-level features as well as “contextual” differences in site-level features, including possible differences in program implementation. Our goal in this article is to adjust site-level estimates for differences in the distribution of observed unit-level features: If we can reweight (or “transport”) each site to have a common distribution of observed unit-level covariates, the remaining treatment effect variation captures contextual and unobserved compositional differences across sites. This allows us to make apples-to-apples comparisons across sites, parceling out the amount of cross-site effect variation explained by systematic differences in populations served. In this article, we develop a framework for transporting effects using approximate balancing weights, where the weights are chosen to directly optimize unit-level covariate balance between each site and the common target distribution. We first develop our approach for the general setting of transporting the effect of a single-site trial. We then extend our method to multisite trials, assess its performance via simulation, and use it to analyze a series of multisite trials of adult education and vocational training programs. In our application, we find that distributional differences are potentially masking cross-site variation. Our method is available in the balancer R package.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"420 - 453"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231155427","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2
Abstract
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture “compositional” differences in the distributions of unit-level features as well as “contextual” differences in site-level features, including possible differences in program implementation. Our goal in this article is to adjust site-level estimates for differences in the distribution of observed unit-level features: If we can reweight (or “transport”) each site to have a common distribution of observed unit-level covariates, the remaining treatment effect variation captures contextual and unobserved compositional differences across sites. This allows us to make apples-to-apples comparisons across sites, parceling out the amount of cross-site effect variation explained by systematic differences in populations served. In this article, we develop a framework for transporting effects using approximate balancing weights, where the weights are chosen to directly optimize unit-level covariate balance between each site and the common target distribution. We first develop our approach for the general setting of transporting the effect of a single-site trial. We then extend our method to multisite trials, assess its performance via simulation, and use it to analyze a series of multisite trials of adult education and vocational training programs. In our application, we find that distributional differences are potentially masking cross-site variation. Our method is available in the balancer R package.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.