Klasifikasi Customer Relationship Management Menggunakan Dataset KDD Cup 2009 dengan Teknik Reduksi Dimensi

Fahmi Ardiansyah, Fazal Hamdan, S. Sugiyanto, Ilham Wahyu Siadi
{"title":"Klasifikasi Customer Relationship Management Menggunakan Dataset KDD Cup 2009 dengan Teknik Reduksi Dimensi","authors":"Fahmi Ardiansyah, Fazal Hamdan, S. Sugiyanto, Ilham Wahyu Siadi","doi":"10.34010/komputika.v11i2.6498","DOIUrl":null,"url":null,"abstract":"Customer Relationship Management (CRM) merupakan teknologi yang menghubungkan antara pelanggan dengan bisnis, CRM dapat membantu pertumbuhan bisnis dan meningkatkan loyalitas dalam pelanggan. Pada awalnya CRM hanya berbentuk tulisan tangan, namun dengan berkembangnya teknologi saat ini CRM berkaitan dengan strategi bisnis secara keseluruhan, sistem CRM layaknya berbentuk repository yang mengintegrasikan aktivitas dari penjualan, pemasaran, dan dukungan pelanggan dengan menyederhanakan proses strategi dan pengelolaan penjualan dalam suatu sistem. Contohnya adalah pada data Knowledge Data Discovery (KDD) Cup 2009 yang merupakan Piala KDD 2009 menawarkan kesempatan untuk mengerjakan database pemasaran besar dari Perusahaan Telekomunikasi Prancis Orange untuk memprediksi kecenderungan pelanggan untuk beralih penyedia (churn), beli produk atau layanan baru (appetency), atau beli upgrade atau add-on yang diusulkan ke mereka untuk membuat penjualan lebih menguntungkan (up-selling). Masalahnya karena menangani database yang sangat besar, termasuk data yang heterogen (variabel numerik dan kategorik), dan distribusi kelas yang tidak seimbang ini membutuhkan efisiensi waktu yang cukup lama dalam pengelolaan dataset oleh karena itu dibutuhkan teknik reduksi dimensi yang merupakan teknik pengurangan dari jumlah dimensi dari dataset, dengan dimensi reduksi optimal hasilkan klasifikasi paling baik dengan PCA, PCA dengan klasifikasi Random Forest 96.93%. Klasifikasi LDA dengan Naïve Bayes 61.00%. Klasifikasi SVD dengan Random Forest 95.97%.","PeriodicalId":52813,"journal":{"name":"Komputika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v11i2.6498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Customer Relationship Management (CRM) merupakan teknologi yang menghubungkan antara pelanggan dengan bisnis, CRM dapat membantu pertumbuhan bisnis dan meningkatkan loyalitas dalam pelanggan. Pada awalnya CRM hanya berbentuk tulisan tangan, namun dengan berkembangnya teknologi saat ini CRM berkaitan dengan strategi bisnis secara keseluruhan, sistem CRM layaknya berbentuk repository yang mengintegrasikan aktivitas dari penjualan, pemasaran, dan dukungan pelanggan dengan menyederhanakan proses strategi dan pengelolaan penjualan dalam suatu sistem. Contohnya adalah pada data Knowledge Data Discovery (KDD) Cup 2009 yang merupakan Piala KDD 2009 menawarkan kesempatan untuk mengerjakan database pemasaran besar dari Perusahaan Telekomunikasi Prancis Orange untuk memprediksi kecenderungan pelanggan untuk beralih penyedia (churn), beli produk atau layanan baru (appetency), atau beli upgrade atau add-on yang diusulkan ke mereka untuk membuat penjualan lebih menguntungkan (up-selling). Masalahnya karena menangani database yang sangat besar, termasuk data yang heterogen (variabel numerik dan kategorik), dan distribusi kelas yang tidak seimbang ini membutuhkan efisiensi waktu yang cukup lama dalam pengelolaan dataset oleh karena itu dibutuhkan teknik reduksi dimensi yang merupakan teknik pengurangan dari jumlah dimensi dari dataset, dengan dimensi reduksi optimal hasilkan klasifikasi paling baik dengan PCA, PCA dengan klasifikasi Random Forest 96.93%. Klasifikasi LDA dengan Naïve Bayes 61.00%. Klasifikasi SVD dengan Random Forest 95.97%.
基于降维技术的KDD Cup 2009数据集的客户关系管理分类
客户关系管理(CRM)是一种将客户与企业联系在一起的技术,它可以帮助企业发展,增加客户的忠诚度。CRM最初只是手写的,但随着目前技术的发展,CRM系统就像一个整体商业战略,通过简化一个系统的战略过程和销售管理,将活动从销售、营销和客户支持中整合出来。例子是2009年知识数据探索(KDD)杯的奖杯是KDD 2009年提供的机会做大数据库营销、法国电信公司Orange来预测客户倾向于换了新产品或服务提供商(搅拌),买(appetency),或者买升级add-on向他们提出的建议让销售更有利可图(up-selling)。非常大的问题,因为处理数据库,包括异质的数据(数值变量和kategorik),这些不平衡的班级和分销管理中需要相当长的一段时间效率数据集因此需要还原技术是技术维度的数据集的维度的数量减少,PCA和最佳还原最好赚分类维度,PCA和随机森林分类96 93%。LDA的划分是Naive Bayes 61.00%。把SVD归类为随机森林95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信