On approximating initial data in some linear evolutionary equations involving fraction Laplacian

IF 0.4 Q4 MATHEMATICS, APPLIED
R. Karki
{"title":"On approximating initial data in some linear evolutionary equations involving fraction Laplacian","authors":"R. Karki","doi":"10.5206/mase/13511","DOIUrl":null,"url":null,"abstract":"We study an inverse problem of recovering the intial datum in a one-dimensional linear equation with Dirichlet boundary conditions when finitely many values (samples) of the solution at a suitably fixed space loaction and suitably chosen finitely many later time instances are known. More specifically, we do this. We consider a one-dimentional linear evolutionary equation invliing a Dirichlet fractional Laplacian and the unknown intial datum f that is assumed to be in a suitable subset of a Sovolev space. Then we investigate how to construct a sequence of future times and choose n so that from n samples taken at a suitably fixed space location and the first n terms of the time sequence we can constrcut an approximation to f with the desired accuracy. ","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/13511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study an inverse problem of recovering the intial datum in a one-dimensional linear equation with Dirichlet boundary conditions when finitely many values (samples) of the solution at a suitably fixed space loaction and suitably chosen finitely many later time instances are known. More specifically, we do this. We consider a one-dimentional linear evolutionary equation invliing a Dirichlet fractional Laplacian and the unknown intial datum f that is assumed to be in a suitable subset of a Sovolev space. Then we investigate how to construct a sequence of future times and choose n so that from n samples taken at a suitably fixed space location and the first n terms of the time sequence we can constrcut an approximation to f with the desired accuracy. 
关于部分拉普拉斯算子线性演化方程中初始数据的逼近
我们研究了一个具有Dirichlet边界条件的一维线性方程的初始数据恢复逆问题,当已知在适当固定的空间位置上的解的有限多个值(样本)和适当选择的有限多稍后的时间实例时。更具体地说,我们这样做。我们考虑了一个一维线性进化方程,该方程包含Dirichlet分数拉普拉斯算子和未知的初始数据f,假设初始数据f在Sovolev空间的合适子集中。然后,我们研究如何构建未来时间序列,并选择n,以便从在适当固定的空间位置采集的n个样本和时间序列的前n项中,我们可以构造出具有所需精度的f的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信