{"title":"Bandwidth selection for nonparametric regression with errors-in-variables","authors":"Hao Dong, Taisuke Otsu, L. Taylor","doi":"10.1080/07474938.2023.2191105","DOIUrl":null,"url":null,"abstract":"Abstract We propose two novel bandwidth selection procedures for the nonparametric regression model with classical measurement error in the regressors. Each method evaluates the prediction errors of the regression using a second (density) deconvolution. The first approach uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap approach and the concept of out-of-bag prediction. We show the asymptotic validity of both procedures and compare them to the SIMEX method in a Monte Carlo study. As well as dramatically reducing computational cost, the methods proposed in this article lead to lower mean integrated squared error (MISE) compared to the current state-of-the-art.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"393 - 419"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2191105","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We propose two novel bandwidth selection procedures for the nonparametric regression model with classical measurement error in the regressors. Each method evaluates the prediction errors of the regression using a second (density) deconvolution. The first approach uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap approach and the concept of out-of-bag prediction. We show the asymptotic validity of both procedures and compare them to the SIMEX method in a Monte Carlo study. As well as dramatically reducing computational cost, the methods proposed in this article lead to lower mean integrated squared error (MISE) compared to the current state-of-the-art.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.